The chiral parametrization of QCD gauge field is considered in details in an approach developed earlier for SU(2) and SU(3) cases. A color chiral field is introduced, gluons are chirally rotated, and vector component of rotated gluons is defined on condition that no new color variables appeared with the chiral field. This condition for SU(3) case associates such a vector component with SU(3)/U(2) coset plus an U(2) field. The QCD vector field in CP^2 and U(2) sectors is studied in new variables of chiral parametrization. The singlet gluonium can acquire mass due to formation of dimension two vacuum condensate of induced axial-vector field. Refs 34.

Keywords: gluons, quantum chromodynamics, Cho—Faddeev—Niemi—Shabanov (CFNS) decomposition.

V. Yu. Novozhilov

CHIRAL PARAMETRIZATION OF QCD VECTOR FIELD. GLUON SECTOR

St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation

The chiral parametrization of QCD gauge field is considered in details in an approach developed earlier for SU(2) and SU(3) cases. A color chiral field is introduced, gluons are chirally rotated, and vector component of rotated gluons is defined on condition that no new color variables appeared with the chiral field. This condition for SU(3) case associates such a vector component with SU(3)/U(2) coset plus an U(2) field. The QCD vector field in CP^2 and U(2) sectors is studied in new variables of chiral parametrization. The singlet gluonium can acquire mass due to formation of dimension two vacuum condensate of induced axial-vector field. Refs 34.

Keywords: gluons, quantum chromodynamics, Cho—Faddeev—Niemi—Shabanov (CFNS) decomposition.

B. Ю. Новожилов

КИРАЛЬНАЯ ПАРАМЕТРИЗАЦИЯ ВЕКТОРНОГО ПОЛЯ КХД. СЕКТОР ГЛЮОНОВ

Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7–9

Киральная параметризация калибровочного поля КХД подробно рассмотрена в подходе, предложенном ранее для SU(2) и SU(3) случаев. Введено цветное киральное поле, глюонные поля кирально повёрнуты, и векторная компонента повёрнутых глюонов определена условием отсутствия лишних цветных степеней свободы, вносимых киральным полем. Для случая SU(3) это условие ассоциирует векторную компоненту с комплексным проективным пространством SU(3)/U(2) плюс U(2) поле. Векторное КХД поле рассмотрено в секторах CP^2 и U(2) в новых переменных киральной параметризации. Синглетный глюоний может получить массу вследствие образования вакуумного конденсата размерности 2 наведённых аксиально-векторных полей. Библиогр. 34 назв.

Ключевые слова: глюоны, квантовая хромодинамика, разложение Чо—Фаддеев—Ниemi—Шabanов.

Dedicated to Yu. V. Novozhilov on his 90th birthday

Introduction. The monopole condensation scenario is considered as the most probable way to confinement [1–4]. Therefore, much efforts were undertaken last decade, in order to find a proper parametrization of the gauge field in QCD, which could contain necessary
topological properties. Long ago, the Faddeev soliton picture \cite{5} of QCD excitations was the first model, where a unit three-dimensional vector $\mathbf{n}(x)$, $\mathbf{n}^2 = 1$, was introduced to describe knot solitons in four-dimensional space-time. In order to consider magnetic properties of the QCD Cho \cite{6, 7} and independently Duan and Ge \cite{8} used the $\mathbf{n}(x)$ field, as a vector in the isospin space, to build the connection $[\mathbf{n}, \partial_\mu \mathbf{n}]$ in the $SU(2)$ Yang—Mills theory. The Faddeev soliton picture was revived in the Faddeev—Niemi knot model \cite{9}, and in the \mathbf{n}-dependent parametrization of the QCD gauge field \cite{10, 11}. Shabanov \cite{12, 13} used the Cho connection is to reformulate a Yang—Mills theory as a Abelian gauge theory via a nonlocal change of variables in the space of connections, rather than via a gauge fixing, and stressed an importance of coset variables with related $U(1)$ symmetry.

The Cho—Faddeev—Niemi—Shabanov (CFNS) decomposition for two-color QCD is defined by

$$A_\mu = C_\mu \mathbf{n} + g^{-1} [\partial_\mu \mathbf{n}, \mathbf{n}] + X_\mu, \quad \mathbf{n} X_\mu = 0,$$

so that the behaviour of all fields is fixed with respect to \mathbf{n}. The CFNS decomposition was extended to $SU(3)$ \cite{13–16} and it was shown to describe monopoles.

The question of the $\mathbf{n}(x)$ field origin was discussed several times \cite{14, 17–20} to the result that $\mathbf{n}(x)$ can be treated as a collective dynamic field, which does not introduce additional degrees of freedom. As far as physical implications are concerned, it was shown that for two colors at low energy the CFNS procedure corresponds to a spin-charge separation \cite{11}. This is a new step in the “abelianization” program compared with maximal Abelian gauge approach \cite{21, 22}. In CFNS picture the abelian directions are defined in a gauge invariant way.

The CFNS decomposition as a reformulation of QCD based on change of variables has been recently investigated in detail in series of papers \cite{14, 23, 24} where, in particularly, it was found that the Wilson loop operator and the Polyakov loop operator are constructed out of first two terms in A_μ alone. Studies of coset spaces appearing in the CFNS picture revealed an existence of vortex solutions \cite{25}. The CFNS approach has been extended to the treatment of defects \cite{26}.

However, restriction to the QCD without quarks raises the question, whether such approximation is good. Due to the chiral anomaly \cite{27, 28}, at the quantum level the color gauge sector and the color chiral anomalous sector are parts of the total color space. Chiral transformations U of quarks in the Dirac Lagrangian do not change the Yang—Mills field in the gauge sector of the theory, but introduce different decompositions of the Yang—Mills field in terms of arising vector and axial vector components. Among these decompositions we are interested in those, which preserve number of the dynamical degrees of freedom (DOF) and may reveal the topological degrees. It is at the classical level, where such decompositions are equivalent, because the Dirac Lagrangian is chiral invariant. At the quantum level, the quark path integral is changed because of the anomaly, therefore, in this case, an impact of the chiral parametrization on the quark path integral requires a special investigation.

The aim of this paper to consider in details a chiral parametrization (ChP) of the QCD gauge field proposed in papers \cite{29, 30}. We assume that the basic color field $\mathbf{m}(x)$ has its origin in the quark chiral field U, as a remnant of U after conditions of consistency are imposed. We introduce the decomposition of the QCD gauge field G_μ via a chiral rotation: the field G_μ in the Dirac Lagrangian is submitted to a chiral transformation U initiated by quarks

$$\psi \rightarrow \psi^U = U \psi_L + \psi_R,$$

$$G_\mu \rightarrow \left(V^U, A^U \right) = V^U_\mu - A^U_\mu.$$
where \(\psi_{L,R} \) denote left (right) quarks, \(V^U \) and \(A^U \) are correspondingly vector and axial vector components of chirally rotated \(G_\mu \). Then the second line would represent the chiral decomposition, if it is possible to find such a special chiral field \(U_0 \), when \(V^U_\mu \) is invariant under \(U_0 \) and \(V^U_\mu \) can be calculated as a function of \(V^U_\mu (G) \), i.e. the condition \(\det(\partial V^U / \partial G) = 0 \) is satisfied. As a result, this defines \(U_0 = m(x), \quad m^2 = 1, \quad tr m = 1 \) up to a constant phase. In the case \(SU(2) \) we have \(V^U_\mu = m C_\mu + \frac{1}{2} m \partial_\mu m \), while the axial part \(A^U_\mu \) is orthogonal to \(m \) in color space and may be identified with \(-X_\mu \). Thus, this parametrization is the same as the CFNS one in \(SU(2) \). In the \(SU(3) \) case, the chiral decomposition selects the \(SU(3)/U(2) \approx CP^2 \) color space (minimal symmetry), while the CFNS decomposition admits also the \(SU(3)/U(1)^2 \) coset space (maximal symmetry). The conclusion of [29, 30] is that the chiral parametrization coincides with the CFNS in the gluon sector, if the unit chiral color vector \(m(x) \) is identified with the basic color vector \(n(x) \) of CFNS.

It is important that in ChP all properties of decomposition fields follow from chiral transformation rules.

The relation \(G_\mu = V^U_\mu - A^U_\mu \) in (1) is invariant under any \(U \)-transformations. Among all matrices \(U \) there is a chiral \(U(1) \) group of matrices \(U_\chi = \exp i m \chi \) with \(\chi = \text{const} \), which do not change DOF of \(V^U_\mu \) and describe transformations of coset variables. These transformations look dangerous for the chiral decomposition, because in the quark quantum sector they generate the chiral anomaly and the Wess–Zumino–Witten topological action \(W_{wzw} \). In this case \(W_{wzw} \) represents quantization condition similar in spirit to the Dirac quantization of monopoles.

Left-Right group \(SU(3)_L \times SU(3)_R \) and chiral field. In this section we establish notations for the Left-Right group \(SU(3)_L \times SU(3)_R \) and the chiral field. Consider massless fermions in external vector and axial vector fields \(V_\mu, A_\mu \) and the Dirac operator

\[
\mathcal{D} (V, A) = i \gamma^\mu \left(\partial_\mu + V_\mu + \gamma_5 A_\mu \right)
\]

(1)

with antihermitean fields in algebra \(SU(3) \), so that \(V_\mu = -V^{a}_{\mu} i a, A_\mu = -A^{a}_{\mu} i a \), where \(t_a, a = 1, 2, \ldots 8 \) are generators. The chiral transformation of fermions is given by

\[
\psi'_L = \tilde{\xi}_L \psi_L, \psi'_R = \tilde{\xi}_R \psi_R, \quad \psi = \psi_L + \psi_R,
\]

(2)

where \(\tilde{\xi}_L(x) \) and \(\tilde{\xi}_R(x) \) are local chiral phase factors of left and right quarks \(\psi_L \) and \(\psi_R \), represented by unitary matrices in defining representations of left \(SU(3)_L \) and right \(SU(3)_R \) subgroups of the chiral group \(G_{LR} = SU(3)_L \times SU(3)_R \). For \(\psi_L = \frac{1}{2}(1 + \gamma_5) \psi \), \(\psi_R = \frac{1}{2}(1 - \gamma_5) \psi \), generators \(t_{La} \) and \(t_{Ra} \), of left and right subgroups of \(G_{LR} \) can be written as \(t_{La} = \frac{1}{2}(1 + \gamma_5) \lambda_a, t_{Ra} = \frac{1}{2}(1 - \gamma_5) \lambda_a, \) \([t_{La}, t_{Ra}] = 0 \), where \(\lambda_a, a = 1, 2, \ldots 8 \) are the Gell-Mann matrices. Then quark left and right chiral phase factors \(\tilde{\xi}_L, \tilde{\xi}_R \) arise from application of operators \(\tilde{\xi}_L = \exp(-it_{La}\omega_{La}), \tilde{\xi}_R = \exp(-it_{Ra}\omega_{Ra}) \) to left and right quarks \(\psi_L \) and \(\psi_R \). Vector gauge transformations \(g \) are associated with \(t_a = t_{La} + t_{Ra} = \lambda_a/2 \), i.e. \(g(x) \) has properties of the product \(\tilde{\xi}_L(x) \tilde{\xi}_R(x) \) of identical left and right rotations, \(\omega_L = \omega_R = \alpha \). The generator of purely chiral transformations \(g_5 \) is \(t_{5a} = \gamma_5 \lambda_a/2 = t_{La} - t_{Ra} \), thus, \(g_5 \) has properties of \(\tilde{\xi}_L \tilde{\xi}_R \) for \(\omega_L = \omega_R = \Theta \). Infinitesimally, the Dirac operator is transformed according to

\[
\delta \mathcal{D} = \left[\frac{1}{2} t_a \lambda_a, \mathcal{D} \right] + \left(i \frac{1}{2} \gamma_5 \Theta a \lambda_a, \mathcal{D} \right).
\]

(3)

Commutation relations for \(t_a, t_{5a} \) are given by

\[
[t_a, t_b] = i f_{abc} t_c, [t_a, t_{5b}] = i f_{abc} t_{5c}, [t_{5a}, t_{5b}] = i f_{abc} t_c,
\]

(4)

438
where f_{abc} are antisymmetrical structure constants of $SU(3)$, we use the normalization $tr_{\alpha_{a}b_{b}} = 1/2\delta_{ab}$.

Instead of phases ξ_{L} and ξ_{R} one can work with the chiral field $U = \xi_{R}^{\dagger}Q_{L}$, which describes rotation of only left quark leaving right quark in peace $\psi_{L} \rightarrow \psi_{L}' = U\psi_{L}\psi \rightarrow \psi_{R}' = \psi_{R}$. The same result can be obtained by the chiral transformation $\psi_{L} \rightarrow \xi_{L}\psi_{L}, \psi_{R} \rightarrow \xi_{R}\psi_{R}$, followed by a vector gauge transformation with a gauge function ξ_{R}. The usual chiral gauge choice is $\xi_{R} = \xi_{L}^{*}$, then the chiral field is taken as squared left chiral phase:

$$U = \xi_{L}^{2} = \exp i\Pi, \Pi = \Pi_{a}b_{a},$$

(5)

where we used the flavor notation Π. This chiral gauge corresponds to the following form of chiral transformation of the Dirac field

$$\psi^{U} = g_{5}(U)\psi = \left(P_{L}U + P_{R}\right)\psi, \quad \psi^{U} = \psi g_{5}(U) = \psi \left(P_{R}U^{+} + P_{L}\right),$$

(6)

which is used in this paper.

To describe U in the case involving monopoles and other defects one can use the basis with the step up/down operators $E_{\pm i}$

$$E_{\pm 1} = \frac{1}{2} \left(\lambda_{4} \pm i\lambda_{5}\right), \quad E_{\pm 2} = \frac{1}{2} \left(\lambda_{4} \pm i\lambda_{7}\right) \quad (7)$$

and diagonal generators

$$H_{i} = \left[E_{+i}, E_{-i}\right], \quad i = 1, 2, 3$$

(8)

with commutation relations

$$[[E_{+i}, E_{-j}], E_{+k}]\delta_{ij}E_{+k} + \delta_{jk}E_{+i}, [[E_{+i}, E_{-j}], E_{-k}] = -\delta_{ij}E_{-k} - \delta_{jk}E_{-i}$$

(9)

and the $U(1)$ generator of $SU(3) \otimes U(1)$

$$\Lambda_{U(1)} = \frac{1}{4} \sum_{i} H_{i} = \frac{1}{4} \text{diag} \left(1, 1, -3\right).$$

(10)

Introducing notations for $Z \subset C^{3}$, normalized $SU(3)$ spinor φ and the CP^{2} coordinates $u_{\alpha}, u_{\beta}^{\dagger}, \alpha, \beta = 1, 2,$

$$Z = (z_{1}, z_{2}, z_{3})^{T} \subset C^{3};$$

$$Z = \sqrt{Z^{\dagger}Z} \left(q_{1}, q_{2}, q_{3}\right)^{T} = \frac{\sqrt{Z^{\dagger}Z}}{\sqrt{1 + u^{\dagger}u}} \left(u_{1}, u_{2}, 1\right)^{T}$$

one can parametrize the chiral field U in a form of the $SU(3)$ group element as follows

$$U = \frac{1}{\vartheta} \left(\begin{array}{cc} \Delta & iu^{\dagger} \\
1 & 1 \end{array}\right), \quad \vartheta = \sqrt{1 + u^{\dagger}u},$$

where $u = \left(u_{1}, u_{2}\right)^{T}$ and Δ is the 2×2 matrix

$$\Delta_{ij} = \vartheta \delta_{ij} - \frac{u_{i}u_{j}^{\dagger}}{1 + \vartheta}$$

For applications related to $SO(3)$ monopoles and $SU(3)/SO(3)$ coset, it is convenient to consider $SU(3)$ in the $SO(3)$ basis [31]. $SO(3)$ is the maximal subgroup of $SU(3)$. In this
built on antisymmetric λ-matrices $\hat{N} = \kappa_{k}O_{k}$, where $\hat{N}(x)$ is
built on antisymmetric λ-matrices $\hat{N} = \kappa_{k}O_{k}$, $O_{k} = (\lambda_{7}, -\lambda_{5}, \lambda_{2})$, $\kappa_{k}\kappa_{k} = 1$, $N^{2} = N$, while
\hat{N}^{2} contains only symmetric λ’s. Then general $SU(3)$-chiral field is

$$U(\alpha, \beta) = \exp \ii \Pi(\alpha, \beta) = \exp \left(\hat{N}\alpha + \left(\frac{1}{2}(\hat{N}^{\prime}, \hat{N}^{\prime\prime}) - \frac{1}{3} \tr N^{\prime}N^{\prime\prime}\right)\beta \right), \quad (11)$$

where $\hat{N}^{\prime}, \hat{N}^{\prime\prime}$ depend on $SO(3)$ unitvectors n_{k}^{i}, n_{k}^{ii}. Three unit vectors plus α, β, give altogether 8 parameters of $SU(3)$.

The Dirac Lagrangian remains invariant under chiral transformation of fermions if external fields transform correspondingly

$$\psi \slashed{D} (V, A) \psi = \psi^{U} D (V^{U}, A^{U}) \psi^{U}, \quad (12)$$

where

$$V^{U} = \frac{1}{2} U [\partial U^{+} + \{V, U^{+}\} + [A, U^{+}]],$$

$$A^{U} = \frac{1}{2} U [\partial U^{+} + [V, U^{+}] + \{A, U^{+}\}]. \quad (13)$$

These expressions will be used as the starting point for an introduction of chiral variables into the QCD vector field.

Chiral field as a direction in the color space. Consider the Dirac action $\psi \slashed{D} (V, 0) \psi$

containing only the QCD gauge field, V_{μ}. There is no axial vector color field, $A = 0$ initially. After the chiral rotation of fermions we get chirally rotated gauge field

$$V^{U} = \frac{1}{2} U [\partial U^{+} + \{V, U^{+}\}], \quad A^{U} = \frac{1}{2} U [\partial U^{+} + [V, U^{+}]]. \quad (14)$$

This is the definition of the (once) chirally rotated field. For subsequent chiral rotations one should use transformation rules (13). Now, V^{U} is a gauge field

$$V^{U} \to gV^{U}g^{+} + g\partial g^{+}, A^{U} \to gA^{U}g^{+}, \quad (15)$$

while A^{U} transforms homogeneously under gauge transformation $g(x) \subset SU(3)_{L+R}$.

Two simple relations exist for $V^{U} \equiv A^{U}$, namely

$$V_{\mu}^{U} - A_{\mu}^{U} = V_{\mu},$$

$$V_{\mu}^{U} + A_{\mu}^{U} = U(\partial_{\mu} + V_{\mu})U^{+}, \quad (16)$$

which mean that if the chiral field is considered as a regular gauge transformation, then $(V^{U} \pm A^{U})_{\mu}$-combinations should have the same field strengths $(V^{U} \pm A^{U})_{\mu\nu}$. With topological U these combinations can describe different situations. The first of these relations may be considered as a chiral parametrization for $V_{\mu}^{U} = V_{\mu}^{U} - A_{\mu}^{U}$, i.e. as a way to introduce explicitly topological variables of U into the gauge field V_{μ}. The price of such a parametrization would be the requirement of V_{μ}-invariance under chiral rotations $U \to U^\prime U$ eliminating superfluous variables. In order to avoid this situation one should restrict the choice of the special chiral field $U(x) = U_{0}(x)$, to be used for parametrization by the following conditions:

(a) the gauge part V_{μ}^{U} of rotated gluon field is invariant under chiral rotation, and

(b) V_{μ}^{U} is defined uniquely in terms of V_{μ}.

440
Indeed, by introducing the quark color chiral field U we arrive at a system with too many degrees of freedom. To eliminate superfluous variables, one should consider a relation between gluonic fields V_μ and chirally transformed field V_μ^U and find how different parts of these fields can be made from the same material, so that chiral field variables are either fixed, or fully incorporated into gauge field variables.

The invariance condition (a) means that

$$
(V_\mu^U)^U = \frac{1}{2} \left([U^+ (V_\mu^U + A_\mu^U) U + V_\mu^U - A_\mu^U + U^+ \partial_\mu U)] = V_\mu^U.
$$

(17)

In terms of the Dirac operator this condition reads

$$
\varphi (V_\mu^U, 0) = U^+ \varphi (V_\mu^U, 0) U,
$$

(18)

that implies that the axial field does not appear.

This condition defines a special chiral field

$$
U_0 = U_0', U_0^2 = \exp i \xi, \partial_\mu \xi = 0, U_0 = m \exp i \xi/2,
$$

(19)

where m is a hermitian $SU(3)$ matrix with $m^2 = I$ describing a direction in the color space and ξ is a real number. With the chiral field U_0 an axial vector field $A_\mu^{U_0} (V_\mu^{U_0})$ calculated with $V_\mu^{U_0}$ instead of V_μ will disappear

$$
A_\mu^{U_0} (V_\mu^{U_0}) = \frac{1}{2} [U_0^+ (\partial_\mu + V_\mu^{U_0}) U_0 - V_\mu^{U_0}] = 0.
$$

(20)

Note that Eqs following from the condition (a) are independent of the chiral color group.

Consider the condition (b) This can be done by studying the $(V_\mu^{U_0} \rightarrow V_\mu)$-determinant. We have the following relation between 8×8 matrices of gluonic field V_μ and chirally rotated field V_μ^U in adjoint representation

$$
(V_\mu^U)_{ab} = \frac{1}{2} (1 + R (U))_{ab} V_{\mu b} + i \frac{1}{g} (U \partial_\mu U^+)_{ab}, R_{ab} (U) = \frac{1}{2} \text{tr} (\lambda_a \lambda_b U^+),
$$

(21)

where the chiral field $U = \xi_\mu^L = \exp i \Theta, \Theta = \lambda_\mu \Theta_a$, is defined in the chiral gauge $\xi_\mu^* = \xi_\mu^R$. Here $\lambda_a, a = 1, 2, 8$, are the Gell-Mann matrices.

In order to calculate the determinant $\det \frac{1}{2} (1 + R (U))$, it is sufficient to consider the parametrization (11) for U in the case $N' = N'' = N$. We get

$$
U \rightarrow U \left(\hat{N}, \alpha, \beta\right) = \exp \left(-\frac{2}{3} i \beta\right) \left[1 + i e^{i \beta} \sin \alpha + \hat{N}^2 (e^{i \beta} \cos \alpha - 1)\right].
$$

(22)

When eigenvalues of \hat{N} are placed as diag $(1, -1, 0)$, we see that $\alpha = \Theta_3, \beta = \Theta_8 \sqrt{3}$ and

$$
\det \frac{1}{2} (1 + R (U)) = \frac{1}{2} (1 + \cos 2 \alpha) \frac{1}{2} (1 + \cos (\alpha + \beta)) \frac{1}{2} (1 + \cos (\alpha - \beta)).
$$

(23)

This result can be easily checked in (isospin I_3, hypercharge Y) basis, where the diagonal elements of $R (U) = \exp i (I_3 a Y + 2 i \beta)$, as of the adjoint representation of U, are nothing, but those of octet: pions ($I = 1, Y = 0$), K-mesons ($I = 1/2, Y = 1/2$), K-mesons ($I = 1/2, Y = -1/2$), σ-meson ($I = 0, Y = 0$).
This determinant is invariant under reflection \((\alpha, \beta) \rightarrow (-\alpha, -\beta)\). It disappears for values \((\alpha, \beta)\) equal to \((\pi/2, 0)\), \((\pi/2, \pm \pi/2)\) and \((0, \pi)\) characterizing singularity surfaces in chiral color space (i.e., \(\gamma_5 \Theta\)). The first of these sets, \((\pi/2, 0)\), corresponds to \(SO(3)\) subgroup with one zero factor in \(\det\), when \(U(N, \pi/2, 0) = \exp i\tilde{N}\alpha = 1 + i\tilde{N} - \tilde{N}^2\).

For \(SU(3)\) we are interested in two coinciding zero factors of \(\det\) related to two simple roots of \(SU(3)\). Together with a singularity set related to a complex root, we can define three color chiral fields \(U(N, \alpha, \beta)\) for \(SU(3)\). For the pair \((\alpha, \beta) = (0, \pi)\) we get the chiral field

\[
U\left(\tilde{N}, 0, \pi\right) = (1 - 2\tilde{N}^2) \exp(-i\frac{1}{3}\pi) = m_1 \exp(-i\frac{1}{3}\pi).
\]

(24)

For \((\alpha, \beta) = (\pi/2, \pm \pi/2)\) we have

\[
U\left(\tilde{N}, \pi/2, \pi/2\right) = (1 - N - N^2) \exp\left(-i\frac{\pi}{3}\right) = m_2 \exp\left(-i\frac{\pi}{3}\right) U\left(\tilde{N}, \pi/2, -\pi/2\right) = (1 + N - N^2) \exp\left(i\frac{\pi}{3}\right).
\]

(25)

In all these cases \(m_k\) are normalized hermitian \(3 \times 3\) matrices in color space: \(m^2 = I\). A product of two \(m\)'s is equal to the third \(m\) up to a constant phase. With the diagonal \(\tilde{N} = \text{diag}(1, -1, 0)\), the diagonal forms of \(m_k\) are given by

\[
m_1^0 = \text{diag}(-1, -1, 1), \quad m_2^0 = \text{diag}(-1, 1, 1), \quad m_3^0 = \text{diag}(1, 1, 1).
\]

(26)

These matrices have simple meaning: they are related to \(2\pi\) rotation of diagonal operators in \(SU(2)\) subgroups of \(SU(3)\)

\[
m_1^0 = -\exp iI_32\pi, \quad m_2^0 = -\exp iU_32\pi, \quad m_3^0 = \exp iV_32\pi,
\]

(27)

where \(I_3 = \frac{1}{2}\lambda_3\) for isospin subgroup, \(U_3 = -\frac{1}{2}\lambda_3 + \frac{\sqrt{3}}{2}\lambda_8\), for \(U\)-spin subgroup, \(V_3 = \frac{1}{2} + \frac{\sqrt{3}}{2}\lambda_8\) for \(V\)-spin subgroup. From the view point of the Cartan—Weyl basis these matrices correspond to rotation around simple roots (\(m_1^0\) and \(m_2^0\)) and around the composite root (\(m_3^0\)). Matrices \(m_k^0\) are unitary equivalent.

Thus, behavior of the \((V^U_a \rightarrow V^U_b)\) determinant \(\det \frac{1}{2}(1 + R)\) shows, how to restrict chiral color space in defining the chiral field \(U_0\). Chiral invariant regions \(\Omega\) are given by sets \((\alpha, \beta) = (0, \pi), (\pi/2, \pm \pi/2)\), where the chiral field \(U = m_k\) is represented correspondingly by one of \(3 \times 3\) unit matrices \(m_k, k = 1, 2, 3\) up to a constant phase. Our choice is

\[
U_0 = -S m^0 S^+ \equiv S m^0 S^+ = m^0, \quad m^0 = \text{diag}(1, 1, -1) = \frac{2}{\sqrt{3}}\lambda_8 + \frac{1}{3} = \exp i\pi \left(Y - \frac{1}{3}\right),
\]

(28)

where \(S\) is a unitary \(SU(3)\) transformation and \(Y\) is the color hypercharge. Independence of \(m_0\) under global group \(U(1) \notin SU(3)\) is essential. It is introduced as a chiral field \(U_0\) up to a phase. Also, it is a group element of \(SU(3)\) up to a phase and in this quality participates in the \(CP^2\) involution operation (see para 4). It is the generator of \(U(1)\) invariance group of CFNS decomposition (para 5). All field quantities constructed from the color field \(m\) do not depend on this global phase.

The chiral field \(U_0 = m^0\) is an orbit of \(SU(3)\) through the hypercharge \(Y = \lambda_8/\sqrt{3}\). Then \(S\) is defined up to right multiplication \(S \rightarrow Sh\), where \(h \in U(2)\), i.e., \(S\) is in the coset

\[
SU(3)/U(2) = CP^2.
\]
Such manifold is known as the complex projective space CP^2. Under the gauge transformation $g \in SU(3)_{R+L}$ we have $m \to gm^+$. It means that the direction m is changed by gauge transformations defined in terms of CP^2 variables. By a special choice of the gauge ("unitary gauge") this direction may be made coinciding with $m_0 = 2Y + 1/3$. Thus, CP^2 variables describe orientational degrees of freedom contained in the unit color vector m. As we shall see below, this quantity brings quark chiral topological defects into the gluon field.

Structure of m rotated fields: m-even and m-odd fields. The rules (13) of chiral transformation for the gauge field G_μ (in absence of an axial vector field in initial state) by the special chiral field

$$U_0 = m, \ m^2 = 1, \ \text{tr} \ m = 1$$

define essential features of rotated fields structure. Let us rewrite the rules (13) in the form

$$G^m_\mu = \frac{1}{2} (m \{G_\mu, m\} + m \partial_\mu m),$$

$$A^m_\mu = \frac{1}{2} (m [G_\mu, m] + m \partial_\mu m) = \frac{1}{2} m D_\mu (G) m = \frac{1}{4} \{m, D_\mu (G) m\},$$

(29)

where $D_\mu (G) m = \delta_\mu m + [G_\mu, m]$ and we used identity $D_\mu (G) m^2 = 0$. It follows from (11), that with respect to m the gauge field G may be subdivided into commuting G_\parallel and anticommuting G_\perp parts

$$G = G_\parallel + G_\perp,$$

$$[G_\parallel, m] = 0, \ {G_\perp, m} = 0.$$

(30)

Only G_\parallel contributes to G^m and only G_\perp contributes to A^m

$$G^m_\parallel = G_\parallel + \frac{1}{2} m \partial_\mu m$$

$$A^m_\parallel = G_\perp + \frac{1}{2} m \partial_\mu m.$$

(31)

From $m^2 = 1$ follows that $\partial_\mu m$ anticommutates with m, hence we have the relations

$$\{G^m_\mu, m\} = \{G_\mu, m\};$$

(32a)

$$[G^m_\mu, m] = -\partial_\mu m;$$

(32b)

$$\{A_\mu, m\} = 0;$$

(32c)

$$[A^m_\mu, m] = 2 A^m_\mu m,$$

(32d)

$$[m, D_\mu (G^m) m] = 0;$$

(32e)

$$[m, [\partial_\mu m, \partial_\beta m]] = 0.$$

(32f)

Within the part G_\parallel we distinguish an abelian field mC_μ and an $U(2)$ field Q_μ both commuting with m

$$G_\parallel = mC_\mu + Q_\mu, \ [Q_\mu, m] = 0, \ C_\mu = \text{tr} m G_\mu,$$

(33)

so that

$$G^m_\parallel = G^m_\parallel + \frac{1}{2} m \partial_\mu m = V^m_\mu + Q_\mu,$$

(34)
where we introduced a special notation
\[V_\mu^\Omega = mC_\mu + \frac{1}{2}m\partial_\mu m, \]
(35)
for the \(CP^2 \) field satisfying the invariance condition \(m \varnothing (V_\mu^\Omega, 0) m = \varnothing (V_\mu^\Omega, 0) \). The matrix \(m \) is covariantly constant
\[D_\mu (V_\mu^\Omega) m = 0. \]
(36)
To complete the set of relations for \(m \)-rotated fields we remind two identities
\[G_\mu^m - A_\mu^m = G_\mu \]
\[G_\mu^m + A_\mu^m = mG_\mu m + m\partial_\mu m. \]
Transformations of the Dirac operator \(\varnothing (G, 0) \) due to consequent chiral rotations by \(U_0 = m \)
\[\psi \rightarrow \psi^m = (P_L m + P_R)\psi, \bar{\psi} \rightarrow \bar{\psi}^m = \bar{\psi}(P_R m + P_L), \]
P_{L,R} = \frac{1}{2}(1 \pm \gamma_5) \]
(37)
is given schematically by
\[\varnothing (G, 0) \rightarrow \bar{\psi}^m \varnothing (G, 0) \psi^m = \varnothing (G^m, A^m) \rightarrow \]
\[\bar{\psi}^m \varnothing (G^m, A^m) \psi^m = \varnothing (G, 0) = \varnothing (G^m - A^m, 0). \]
(38)
In the simplest case when the gauge field is absent, \(G_\mu = 0 \), we get
\[\psi^m \varnothing (0, 0) \psi^m = \varnothing \left(\frac{1}{2}m\partial_\mu m, \frac{1}{2}m\partial_\mu m \right) = \varnothing \left(\Gamma^0, \Gamma^0 \right), \]
(39)
where
\[\Gamma^0_\mu = \frac{1}{2}m\partial_\mu m = \frac{1}{4}[m_\mu, \partial_\mu m] \]
(40)
is a \(m \)-invariant connection.
This connection (the Cho connection) \(\Gamma^0_\mu \) is an important element of the decomposition of Yang—Mills field proposed by [8, 9, 14] or the CFN-decomposition.

Chiral parametrization. The chiral parametrization starts when we introduce into this line of identities the field \(G_\mu^m \) including the connection \(\Gamma^0_\mu \) and represent the gauge field as
\[G_\mu = \Gamma^0_\mu + mC_\mu + Q_\mu + X_\mu \]
(41)
and consider the parametrisation of \(X_\mu \) in accordance with its properties as the axial vector field \((-A^m_\mu) \). According to (30) \(X_\mu \) should be equal to \(G_\perp \): while \(Q_\mu \) belongs to \(G_\parallel \)
\[\{X_\mu, m\} = 0, \ [Q_\mu, m] = 0. \]
It is easy to verify that the Dirac operator has a property
\[m \varnothing (V_\mu^\Omega + Q_\mu + X_\mu, 0) m = \varnothing (V_\mu^\Omega + Q_\mu, -X_\mu), \]
(42)
and we can use for \((-X_\mu) \) all relations derived for \(A^m \).
Let us recapitulate them in detail. After chiral field is fixed at \(U \) define \(G \) color decomposition [9]. However, anticommutativity with the matrix anticommutes with \(m \). Existence has been shown by Shabanov [13].

Thus, as it follows from expressions for the QCD vector field (‘gluons’) \(V_\mu \) there are two distinct sectors in the chiral decomposition of \(V_\mu = V_\mu^\Omega + X_\mu \):

(a) the \(CP^2 \)-sector with the dynamical abelian field \(C_\mu \). The space \(CP^2 \) enters the scene with the chiral field \(U = m = Sm_0 S^+ \), as the \(SU(3) \) orbit through \(m_0 \). The matrix \(m \) is the main element, which defines the vector field in the sector \((V_\mu^\Omega)_{CP^2} = mC_\mu + \frac{1}{2} m \partial_\mu m \), including the direction of an abelian field \(C_\mu \) in the \(SU(3) \) space. The axial component \(A_\mu \) anticommutes with \(m \).

(b) an \(U(2) \) sector with the field \((V_\mu)_{U(2)} = Q_\mu \); the chiral field \(U = m \) commutes with \(Q \).

Transformation properties of all field operators follow directly from those (13) of the Left-Right group. Let us recapitulate them in detail. After chiral field is fixed at \(U = U_0 = m \), it is only the standard gauge transformation \(g(x) \in U(3) \) common for gluons and quarks (i.e. for \(G_\mu \) and \(m \)) which is left for all variables. With \(g(x) \simeq 1 + \omega \) we get

\[
\delta G_\mu = -D_\mu (G) \omega, \quad \delta m = [\omega, m], \quad \delta C_\mu = -m \partial_\mu \omega, \quad \delta A_\mu^m = \left[\omega, A_\mu^m \right],
\]

\[
\delta \Gamma_\mu = \left[\omega, \Gamma_\mu \right] - \frac{1}{2} \left(m \partial_\mu \omega m - \partial_\mu \omega \right),
\]

\[
\delta Q_\mu = \left[\omega, Q_\mu \right] + \frac{1}{2} \left(m \partial_\mu \omega m + \partial_\mu \omega \right).
\]

However, when we go over from matrix \(m = Sm_0 S^+ \) to its building blocks in terms of \(m \) e. of \(S \), we find a hidden \(U(1) \) group related to local transformation \(S_{3a} \rightarrow S_{3a} \exp i \chi \) leaving invariant the projector \(P = \frac{1}{2} (1 - m) = S \text{diag} (0,0,1) S^+ \). This \(U(1) \) group is not a subgroup of the gauge \(SU(3) \) \(L+R \) of QCD. It comes as a hidden signature of quarks. Its existence has been shown by Shabanov [13].

\(CP^2 \) sector in the chiral parametrization. The space \(CP^2 \) in QCD emerged in the parametrization of the vector field, when the chiral color direction \(m \), as a remnant of the quark chiral field, was introduced into the gauge field. Being by origin a quark variable the field \(m(x) \) can be considered also as a gluonic variable.

\(m \) is a \(3 \times 3 \) hermitian matrix \(m = m_a \lambda_a; a = 0,1,2,\ldots ,8 \), with the properties \(m^2 = 1 \), \(\text{tr} m = 1 \). The matrix \(m \) can be expressed as

\[
m = Sm_0 S^+, \quad m_0 = \text{diag} (1,1,-1) = \frac{2}{\sqrt{3}} \lambda_3 + \frac{1}{3} = 2Y + \frac{1}{3},
\]

\[
X_\mu = Sh_\mu x_{\mu 3} S^+, t = 4,5,6,7,
\]

with color invariant fields \(x_{\mu 3} \). Another example of matrices anticommuting with \(m \) provide derivatives \(\partial_\mu m \) and \(m \partial_\mu m \), which we use to construct a contribution \(Y_\mu \) to \(A_\mu^U \)

\[
Y_\mu = q \partial_\mu m + i \gamma m \partial_\mu m,
\]

where \(q \) and \(\chi \) are colorless functions. Analogous terms with derivatives exist in the two-color decomposition [9]. However, anticommutativity with the matrix \(m \) is not sufficient to define \(G_\perp = X_\mu + Y_\mu \). We should count number of degrees of freedom contained in the chiral parametrization and consider gauge fixing. Thus, the relation \(G_\perp = X_\mu + Y_\mu \) gives us only a choice of eligible terms which can be different for different applications.
where $\xi_{\alpha}, \alpha = 1, 2$, is normalized according to $\xi^\dagger \xi = 1$, and ξ, ξ^\dagger, ω represent four independent variables of CP^2. Due to relation $\alpha^2 = \alpha$ we have the closed expression

$$S = 1 + i \tilde{\alpha} \sin \omega + \tilde{\alpha}^2 (\cos \omega - 1), \quad \alpha^2 = \xi_0 \xi_0^\dagger, \quad \alpha_{33} = 1, \quad \alpha_{33} = 0. \quad (48)$$

The chiral matrix m anticommutes with $\tilde{\alpha}, \{\tilde{\alpha}, m\} = 0$, as a result

$$m = S^2 m_0. \quad (49)$$

The hidden $U(1)$ symmetry is described by transformation $\tilde{\xi}_\alpha \to e^{i\theta} \tilde{\xi}_\alpha$ which leaves α^2 invariant.

$SU(3)$ matrices Q commuting with m can be built on S-transforms of $Q^0 = \lambda_q Q^0_q$, $q = 1, 2, 3, 8$, namely $Q = SQ^0 S^+$.

(b) Representation of m in terms of projection operators.

One can consider CP^2 as a space of hermitean 3×3 projection operators

$$P = P_a \lambda_a, \quad a = 0, 1, 2, \ldots, 8, \quad P^2 = P, \quad trP = 1, \quad \lambda_0 = I = \text{diag}(1, 1, 1) \quad (50)$$

To arrive at CP^2 space, we can start with $P^0 = \frac{1}{2} (1 - m_0) = \text{diag}(0, 0, 1)$ and construct $P = SP^0 S^+ = \frac{1}{2} (1 - m)$, where S is a general unitary $SU(3)$ matrix (which always can be rewritten in a form containing only the tangent bundle T). If we consider a given expression for a projection operator, it is necessary to check defining relations $trP = 1, P^2 = P$, which lead to the following conditions on P_a

$$P_0 = \frac{1}{3}, \quad P_a P_a = \frac{1}{3} d_{abc} P_a P_b = \frac{P_a}{3}, \quad (51)$$

where d_{abc} are symmetric structure constants $d_{abc} = \frac{1}{4} \text{tr} (\lambda_a \{\lambda_b, \lambda_c\})$ with $a, b, c \neq 0$. This definition describes CP^2 as a submanifold of the 8-dimensional Euclidean space R^8, or of R^9 with fixed P_0.

Projection operators P can be realized by means of normalized $SU(3)$ spinors $\varphi = (\varphi_1, \varphi_2, \varphi_3)^T$ considered as unit vectors $|\varphi> \in C^3$ modulo the phase

$$P_{ij} = \varphi_i \varphi_j^\dagger, \quad m_{ij} = -2 P_{ij} + \delta_{ij}, \quad (52)$$

assuming $\varphi \neq 0$. $SU(3)$ spinors φ and φ^\dagger represent matrix elements S_{ij} and S_{ij}^+ of unitary S in definition $m = S m_0 S^+$. This representation should be remembered in understanding expressions $P = \varphi \varphi^\dagger$ and $[P, \varphi] = \varphi$.

m is an orbit of $SU(3)$ through hypercharge $Y = \frac{1}{\sqrt{4}} \lambda_8$ and describes the complex projective space CP^2 in terms of matrix elements of S. Due to unitarity of S there are different ways of description of CP^2:

(a) Representation of S in terms of the tangent bundle T of λ_8, when

$$S = \exp i T, \quad T = \tilde{\alpha} \omega, \quad \alpha = \lambda_t \alpha_t, \quad t = 4, 5, 6, 7; \quad T^+ = T, \quad (46)$$

α is given by $\alpha_{3a} = \xi_a^\dagger; \quad \alpha_{33} = \xi_3, \quad \xi^\dagger \xi = 1, \quad \alpha_{ab} = 0$, so that ξ, ξ^\dagger, ω represent four independent variables of CP^2.

$$\alpha = \begin{pmatrix}
0 & 0 & \xi_1 \\
0 & 0 & \xi_2 \\
\xi_1^\dagger & \xi_2^\dagger & 0
\end{pmatrix}, \quad (47)$$

where $\xi_{\alpha}, \alpha = 1, 2$, is normalized according to $\xi^\dagger \xi = 1$, and ξ, ξ^\dagger, ω represent four independent variables of CP^2. Due to relation $\alpha^2 = \alpha$ we have the closed expression

$$S = 1 + i \tilde{\alpha} \sin \omega + \tilde{\alpha}^2 (\cos \omega - 1), \quad \alpha^2 = \xi_0 \xi_0^\dagger, \quad \alpha_{33} = 1, \quad \alpha_{33} = 0. \quad (48)$$

The chiral matrix m anticommutes with $\tilde{\alpha}, \{\tilde{\alpha}, m\} = 0$, as a result

$$m = S^2 m_0. \quad (49)$$
In CP^2 space points ψ and $\psi' = \psi e^{i\alpha}$ connected by an $U(1)$ transformation are equivalent.

A point of CP^2 in terms of ψ is

\[X_\alpha (\psi) = \psi^+ \lambda_\alpha \psi, \]

SU(3) spinors ψ and ψ^+ anticommute with m

\[\{ m, \psi \} = \{ 1 - 2P, \psi \} = 2\psi - 2 \{ \psi \psi^+, \psi \} = 0. \]

In terms of unitary matrix S introduced by the relation $m = S m_0 S^+$ we have $\psi_j = S_j^3$, $j = \alpha, 3$, so that $\psi^T = (i\xi_1 \sin \omega, i\xi_2 \sin \omega, \cos \omega)$.

Normalized SU(3) spinors are not convenient in treatment of nontrivial topological configurations. We can parametrize the CP^2 space by a set of coordinates $z = (z_1, z_2, z_3)$, which is invariant to multiplication by a complex scalar $z \rightarrow \lambda z$.

Then a projection operator can be written as

\[P_{ij} = \frac{z_i z_j^+}{z_1^* z_1} \]

Coordinate z can be parametrized by four angles

\[z = \left(\sin \theta \cos \phi e^{i\beta}, \sin \theta \sin \phi e^{i\gamma}, \cos \theta \right), \]

where $0 \leq \theta, \phi \leq \pi/2; 0 \leq \beta, \gamma \leq 2\pi$.

QCD vector field and Effective gluonic lagrangian. Let us consider the Lagrangian for the gluon field

\[L = -\frac{1}{2g^2} \text{tr} \, G_{\mu \nu}^2, \]

and express it in CP^2 variables.

QCD vector field in CP^2 sector. We consider the gauge field $V^\Omega_\mu = m C_\mu + \frac{1}{2} m \partial_\mu m$ (35) (the CNFS connection) and corresponding field strength

\[V^\Omega_\mu = m C_\mu + \frac{1}{4} \left[\partial_\mu m, \partial_\nu m \right]. \]

We use the representation of m in terms of projection operators (52). After straightforward calculations we get for the CNFS connection in the CP^2 variables

\[\frac{1}{4} \left[m, \partial_\mu m \right] = \left[P, \partial_\mu P \right] = 2 \left(b_\mu P - B_\mu \right) \]

where the magnetic (classical) vector b_μ and magnetic matrix B_μ are given by

\[b_\mu = \frac{1}{2} \left(q_i^+ \partial_\mu q_i - \partial_\mu q_i^+ q_i \right), \]

\[(B_\mu)_{ij} = \frac{1}{2} \left(\partial_\mu q_i q_j^+ - q_i \partial_\mu q_j^+ \right). \]

When the relation $q_1^+ q_1 = 1$ is used, we have $b_\mu = q_1^+ \partial_\mu q_1$.

To avoid overloading the formula, we omit the Latin indices in the further presentation of the material.
Finally, the gauge field in CP^2 variables is

$$V_{\mu}^\Omega = (1 - 2\bar{q}q^+) C_\mu + 2 \left(b_\mu \bar{q}q^+ - B_\mu \right) = C_\mu + \left(q \bar{D}_\mu^{BC} q^+ - D^b_\mu \bar{q} \cdot q^+ \right) = C_\mu + V_{\mu}^\Phi, \quad (60)$$

where

$$D_\mu^{BC} = (\partial_\mu - b_\mu + C_\mu), \quad \bar{D}^b_\mu = (\partial_\mu + b_\mu - C_\mu).$$

We introduce notation

$$V_{\mu}^\Phi = \left(q \bar{D}_\mu^{BC} q^+ - D^b_\mu \bar{q} \cdot q^+ \right). \quad (61)$$

Note the relations

$$\bar{D}^b_\mu \bar{q} \cdot q^+ = -C_\mu q^+ q, \quad q^+ D^{BC}_\mu q = C_\mu q^+ q.$$

The CFN field strength $\frac{1}{4} [\partial_\mu m, \partial_\nu m]$ in Eq. (56) in CP^2 variables looks complicated

$$\frac{1}{4} [\partial_\mu m, \partial_\nu m] = P_{\mu \nu} + 2 \hat{B}_{\mu \nu}, \quad (62)$$

where

$$b_{\mu \nu} = \partial_\mu q^+ \partial_\nu q - \partial_\nu q^+ \partial_\mu q$$

$$\hat{B}_{\mu \nu} = \frac{1}{2} \left(D^b_\mu q \bar{D}^b_\nu q^+ - D^b_\mu q D^b_\nu q^+ \right). \quad (64)$$

We use notations $D^b_\mu = \partial_\mu - b_\mu, \quad \bar{D}^b_\mu = \partial_\mu + b_\mu$.

It is convenient to introduce new matrixes $B_{\mu \nu}$ and $R_{\mu \nu}$

$$\hat{B}_{\mu \nu} = B_{\mu \nu} - \frac{1}{2} R_{\mu \nu}. \quad (65)$$

The matrixes $B_{\mu \nu}$ and $R_{\mu \nu}$ are given by expressions

$$B_{\mu \nu} = \frac{1}{2} \left(\partial_\mu q^+ \partial_\nu q - \partial_\nu q^+ \partial_\mu q \right) \quad (66)$$

$$R_{\mu \nu} = \{ b_\mu \partial_\nu (q \bar{q}^+) - b_\nu \partial_\mu (q \bar{q}^+) \} \quad (67)$$

with properties

$$\text{tr} B^2_{\mu \nu} = b^2_{\mu \nu}, \quad [B_{\mu \nu}, B_{\nu \lambda}] = \frac{1}{2} (b_{\mu \nu} + B_{\mu \nu}), \quad \{ q \bar{q}^+, B_{\mu \nu} \} = 0, \quad \{ R_{\mu \nu}, q \bar{q}^+ \} = 0. \quad (68)$$

The abelian part

$$C_{\mu \nu} = \partial_\mu C_\nu - \partial_\nu C_\mu \quad (69)$$

can be picked out in the gauge field strength (56)

$$V^\Omega_{\mu \nu} = C_{\mu \nu} + V_{\mu \nu}^\Phi, \quad (70)$$

where one can express $V_{\mu \nu}^\Phi$ in terms of matrixes $B_{\mu \nu}$ and $R_{\mu \nu}$

$$V_{\mu \nu}^\Phi = q \bar{q}^+ \left(-2C_{\nu \mu} + b_{\mu \nu} \right) + 2B_{\mu \nu} - R_{\mu \nu}. \quad (71)$$
QCD vector field in U(2)-sector. The gauge field in U(2) sector is $Q_\mu(x)$. In order to deal with Q_μ and φ, φ^+, we replace $Q_\mu \to \hat{Q}_\mu = P_2 Q_\mu P_2$, introducing the projector $P_2 = (1 - \varphi \varphi^+)$ onto the subgroup U(2). It follows

$$\hat{Q}_\mu \varphi = 0, \varphi^+ \hat{Q}_\mu = 0, \hat{Q}_\mu \varphi = -\partial_\mu \hat{Q}_\mu \varphi$$

$$[\partial_\mu m, Q_\nu] = [\partial_\mu \varphi \varphi^+ + \varphi \partial_\mu \varphi^+, Q_\nu] = -[\varphi \varphi^+, \partial_\mu Q_\nu]$$

The field $Q_\mu(x)$ does not commute with the connection $\frac{1}{2} m \partial_\mu m$

$$\left[\frac{1}{2} m \partial_\mu m, Q_\nu\right] = -\frac{1}{2} m \left[m, \partial_\mu Q_\nu \right] = \frac{1}{2} \{\varphi \varphi^+, \partial_\mu Q_\nu\}.$$

Field strength $V^U_{\mu \nu}$ in the U(2) sector consists out of $Q_{\mu \nu} = \partial_\mu Q_\nu - \partial_\nu Q_\mu$ and mixed term $[V^\Omega_\mu, Q_\nu] + [Q_\mu, V^\Omega_\nu]$

$$V^U_{\mu \nu} = Q_{\mu \nu} + [V^\Omega_\mu, Q_\nu] + [Q_\mu, V^\Omega_\nu] = Q_{\mu \nu} + S_{\mu \nu}, \quad (72)$$

where

$$S_{\mu \nu} = \frac{1}{2} \{\varphi \varphi^+, Q_{\mu \nu}\}.$$

Axial vector A^m_μ arising after chiral rotation $U = m$ from G_μ. Consider the axial vector part $A_\mu = A^m_\mu$ in the decomposition $G_\mu = V^\Omega_\mu - A_\mu$. The field A_μ anticommutes with m, hence, taking account of $\{m, \varphi\} = 0$ one can write the decomposition of A_μ as

$$A_\mu = \tilde{K}_\mu \varphi^+ + \varphi K^+_{\mu}, \quad \text{tr} A_\mu = 0, \quad \varphi^+ K_\mu = 0, \quad K^+_{\mu} \varphi = 0. \quad (73)$$

We remind that $\varphi \neq 0$. These terms correspond to tangential structures for m in $SU(3)$ $S_{\eta t} S^+$ and $S_{\eta t}^+ S^+$, $t = 1, 2$; in combination $\eta_1 K^{(1)} + \eta_2 K^{(2)}$, where $\eta_1 = \frac{1}{2} (\lambda_4 + i \lambda_5)$, $\eta_2 = \frac{1}{2} (\lambda_6 + i \lambda_7)$

$$A_\mu = \sum_t \left(S_{\eta t} K^{(t)}_\mu S^+ + S_{\eta t}^+ K^{(t)}_\mu S^+ \right). \quad (74)$$

Indeed, considering this expression in detail we have with $S_{\eta t}^+ = \varphi^+_k, S_{\eta t} = \varphi_k$

$$\left(S_{\eta t} K^{(t)}_\mu S^+ \right)_{k k'} = S_{k t} K^{(t)}_\mu S^+_{k k'} = \tilde{K}_{k k'} \varphi^+_k,$$

$$\left(S_{\eta t}^+ K^{(t)}_\mu S^+ \right)_{k k'} = S_{\eta t}^+ K^{(t)}_\mu S^+_{k k'} = \varphi_k \tilde{K}^+_{k k'}.$$

— decomposition (73). Contribution of A_μ to $V^U_{\mu \nu}$ is given by

$$[A_\mu, \hat{A}_\nu] = (K_\mu K^+_\nu - K_\mu K^+_\nu) - \varphi \varphi^+ \text{tr} \left(K_\mu K^+_\nu - K_\mu K^+_\nu \right). \quad (75)$$

This term commutes with m

$$\left[[A_\mu, \hat{A}_\nu], m \right] = 0.$$

Consider $\hat{A}_{\mu \nu} = D_\mu \hat{A}_\nu - D_\nu \hat{A}_\mu$, where

$$D_\mu \hat{A}_\nu = \left(\partial_\mu \hat{A}_\nu + [V^\Omega_\mu + \hat{Q}_\mu, \hat{A}_\nu] \right). \quad (76)$$

449
We get directly

\[
[V_\mu^\Omega, \hat{A}_v] = -\left(D_\mu^D q \bar{K}_+ + \hat{K}_v D_\mu^D q^+\right)
\]
(77)

\[
[\hat{Q}_\mu, \hat{A}_v] = \hat{Q}_\mu \hat{K}_v q^+ - q \hat{K}_v^+ \hat{Q}_\mu.
\]
(78)

Finally, \(D_\mu \hat{A}_v\) does not contain derivatives of \(q\) and \(q^+\)

\[
D_\mu \hat{A}_v = \left(\nabla_\mu \hat{K}_v\right) q^+ + q \nabla_\mu \hat{K}_v^+,
\]
(79)

where

\[
\nabla_\mu \hat{K}_v = \left(\partial_\mu + \hat{Q}_\mu + b_\mu - 2C_\mu\right) \hat{K}_v; \quad \nabla_\mu \hat{K}_v^+ = \left(\partial_\mu - \hat{Q}_\mu - b_\mu + 2C_\mu\right) \hat{K}_v^+.
\]
(80)

Thus, the term \(\hat{A}_{\mu \nu}\) in \(G_{\mu \nu}\) anticommutes with \(m\)

\[
\{\hat{A}_{\mu \nu}, m\} = 0.
\]

The field strength \(G_{\mu \nu}\). The decomposition of the field strength is

\[
G_{\mu \nu} = V_{\mu \nu}^{\Omega} + V_{\mu \nu}^{U_2} + \left[\hat{A}_\mu, \hat{A}_\nu\right] - \left(D_\mu \hat{A}_v - D_v \hat{A}_\mu\right),
\]
(81)

where we remind

\[
V_{\mu \nu}^{\Omega} = C_{\mu \nu} + V_{\mu \nu}^D
\]

\[
V_{\mu \nu}^D = q \bar{q}^+ (-2C_{\mu \nu} + b_{\mu \nu}) + D_\mu^D q \bar{D}_\mu^D q^+ - D_\mu^D q \bar{D}_\mu^D q^+-\frac{1}{2} \left\{q \bar{q}^+, Q_{\mu \nu}\right\},
\]

\[
V_{\mu \nu}^{U_2} = Q_{\mu \nu} + S_{\mu \nu} = Q_{\mu \nu} + \frac{1}{2} \left\{q \bar{q}^+, Q_{\mu \nu}\right\}, \quad Q_{\mu \nu} = \partial_\mu Q_\nu - \partial_\nu Q_\mu
\]

\[
\left[\hat{A}_\mu, \hat{A}_\nu\right] = (K_\mu K_\nu + K_\nu^+ K_\mu^+) - q \bar{q}^+ tr (K_\mu K_\nu - K_\mu^+ K_\nu^+),
\]

\[
(D_\mu \hat{A}_\nu - D_v \hat{A}_\mu) = \left(\nabla_\mu \hat{K}_\nu - \nabla_\nu \hat{K}_\mu\right) q^+ - q \left(\nabla_\mu \hat{K}_\nu^+ - \nabla_\nu \hat{K}_\mu^+\right).
\]

The Yang—Mills lagrangian. The Yang—Mills lagrangian can be written as

\[
L = -\frac{1}{2g^2} \text{tr} \left(\left(V_{\mu \nu}^{\Omega} + V_{\mu \nu}^{U_2} + [A_\mu, A_\nu]\right)^2 + \hat{A}_{\mu \nu}^2\right)
\]

\[
= -\frac{1}{2g^2} \text{tr} \left\{C_{\mu \nu}^2 - 4q \bar{q}^+ C_{\mu \nu}^2 + \left(V_{\mu \nu}^\Phi\right)^2 + \left(V_{\mu \nu}^{U_2}\right)^2 + 2V_{\mu \nu}^{\Omega} V_{\mu \nu}^{U_2} + [A_\mu, A_\nu]^2 + 2 \left[A_\mu, A_\nu\right] \left(V_{\mu \nu}^{\Omega} + V_{\mu \nu}^{U_2}\right) + \hat{A}_{\mu \nu}^2\right\},
\]
(82)

where

\[
\text{tr} \left(V_{\mu \nu}^\Phi\right)^2 = \left(-2C_{\mu \nu} + b_{\mu \nu}\right)^2 + \text{tr} \left(2B_{\mu \nu} - R_{\mu \nu}\right)^2
\]

\[
\text{tr} B_{\mu \nu}^2 = \frac{1}{2} \left[\left(D_\mu^D \bar{q}^+ D_\mu q\right) \left(D_\mu^D \bar{q}^+ D_\mu q\right) - \left(D_\mu^D \bar{q}^+ D_\mu q\right) \left(D_\mu^D \bar{q}^+ D_\mu q\right)\right] = b_{\mu \nu}^2
\]

\[
\text{tr} R_{\mu \nu}^2 = 2 \left(b_\mu \bar{q}^+ - b_\mu \bar{q}^+\right) \left(b_\mu \bar{q}^+ - b_\mu \bar{q}^+\right)
\]

450
the corresponding quantum anomaly will reflect properties of the path integral. If the chiral field should transform chirally quarks and take into account the quantum anomaly of the quark, this invariance has no consequences. However, when the quark sector is also involved, we consider only the Yang—Mills sector, which leaves invariant the CFNS connection $V_\mu^\Omega = m C_\mu + \frac{1}{2} m \partial_\mu m$ in the following sense
\[(U_\chi V_\mu^\Omega U_\chi^+ + m \partial_\mu m) = V_\mu^\Omega. \] (84)
Then the field $G_\mu = V_\mu^\Omega + Q_\mu - A_\mu$ after the chiral transformation U_χ will become $G_\mu = V_\mu^\Omega + Q_\mu - U_\chi A_\mu$ with a gauge part V_μ^Ω and an axial vector part A_μ
\[V_\mu^\Omega = \frac{1}{2} (U_\chi (V_\mu^\Omega - A_\mu) U_\chi^+ + V_\mu^\Omega - A_\mu + U_\chi \partial_\mu U_\chi^+) = V_\mu^\Omega - \frac{1}{2} (U_\chi A_\mu U_\chi^+ + A_\mu). \] (85)
In the q-parametrization of A_μ, where $m = 1 - 2 \bar{q} q^+$
\[V_\mu^\Omega = V_\mu^\Omega - \cos \chi \left(e^{-i \chi} \hat{K}_\mu^+ + \hat{K}_\mu q^+ e^{i \chi} \right) \]
\[A_\mu^\chi = i \sin \chi \left(e^{-i \chi} \hat{K}_\mu^+ - \hat{K}_\mu q^+ e^{i \chi} \right). \]
It is the interval $\pi / 2 \geq \chi \geq 0$ which is essential for CD: at $\chi = 0$ there is no axial field $V_\mu^\Omega = (V_\mu^\Omega - A_\mu, 0)$, at $\chi = \pi / 2$ the gauge part V_μ^Ω is the standard CFN field V_μ^Ω, while $A_\mu^\chi \rightarrow A_\mu$.

The hidden $U(1)$ invariance of CFNS decomposition, which does not belong to the chiral origin, was found for the $SU(2)$ QCD [13]. This hidden symmetry of CFNS is of chiral origin.

In order to eliminate the superfluous variable, an additional condition is introduced in CFNS [13, 20]
\[D_\mu (V_\mu^\Omega) A_\mu = 0 \] (86).
This condition is covariant under gauge transformations, but breaks $U_χ$ invariance. Indeed, calculating variation of this condition we get for $δU_χ = imδχ$

$$δ \{ D_μ (V^γ) A_{\mu}^γ \} = iδχ \{ (\nabla_μ K_μ \bar{ψ} + q \nabla_μ \bar{K}_μ^+) + 2K_μ^+ K_μ \ (qψ^+ - 1) \} , \quad (87)$$

where the first term acts in the CP^2 space, while second one belongs to $U(2)$ space with $Q_μ$, as a gauge field. At low energies, when dynamics of $Q_μ$ is neglected, the additional condition is equivalent to

$$\nabla_μ K_μ = \left(δ_μ + \hat{Q}_μ + b_μ - 2C_μ \right) K_μ = 0. \quad (88)$$

Note, that at the end point $χ = π/2$ the condition (86) is satisfied.

Singlet gluonium and bilinear condensate. We consider gluonium within the framework of the Chiral parametrisation (CP) of the gauge field in QCD SU(3). According to CP, there are two main sectors in QCD: CP^2 sector and $U(2)$ sector. We are interested in gluonium arising in the CP^2 sector containing an abelian field of SU(3). Similar problem has been discussed within the CFNS decomposition in SU(N)/U(1)$^{N-1}$ setting, and the gluonium under consideration was referred as FAG (free abelian gluon). We shall use this name to underline similitude of problems. However, all gluoniums are free and abelian, because they do not interact among themselves. In general, gluoniums are composite particles and they should be described by some kind of collective field. In the case of FAGs, interaction gives only the mass to the free abelian field. In CP the fundamental unit matrix responsible for topology (central in the CFN decomposition) is provided by the quark chiral field. This restricts the form of such matrix and involves quarks in its calculation.

Consider from equation (82) the lagrangian of an Abelian field $C_μ$. It is convenient to write it in variables $P = q\bar{ψ}^+, P_μ = δ_μ P$

$$L (C) = -\frac{1}{2g^2} \left(C_{μν}^2 - 4C_μtrP \ [P_μ, P_ν] + trA_{μν}^2 \right) \quad (89)$$

with

$$A_μ = (1 - P) \tilde{K}_μP + P\tilde{K}_μ^+ (1 - P) , \quad (90)$$

where $\tilde{K}_μ = K_μ \bar{ψ}^+, \tilde{K}_μ^+ = qK_μ^+$. Note, that there is no cross term $C_μ$ in $[A_μ, A_ν]$ in $L (C)$. Second term in L is multiplied by the magnetic field strength $trP \ [P_μ, P_ν] = b_μ$. Retaining only $C_μ$ as a gauge field in $\tilde{A}_μ = D_μA_ν - D_νA_μ$ and writing $D_μA_ν = δ_μA_ν + [-2PC_μ, A_ν]$ we get

$$tr A_{μν}^2 = 2trQ \ (\nabla_μ K_μ^+ - \nabla_ν K_ν^+) \ (\nabla_μ K_ν - \nabla_ν K_μ) = -16C_μC_μK_μ^+K_ν. \quad (91)$$

It follows from this relation that if there is a space-like vacuum condensate (all fields are anti-hermitian)

$$C_K = \langle K^+ K \rangle = \frac{1}{2} \langle tr A_μ^2 \rangle , \quad (92)$$

then the gluonium $C_μ$ can acquire the mass

$$m_μ^2 = -2C_K. \quad (93)$$

An existence of dimension $d = 2$ condensate was conjectured from different considerations [32–34]. An obvious candidate for a bilinear condensate is the vacuum value $⟨G_μ^2⟩$ of the
QCD gauge field $G_\mu = V_\mu - \nabla_\mu$. However, this quantity is not gauge invariant. Therefore, instead of quantity $\langle G_\mu^2 \rangle$ one considers usually $\langle (G_\mu^2)_{\text{min}} \rangle$, a condensate of its minimal value.

In our case, the condensate $\langle K^+ K \rangle$ is a gauge invariant quantity, because A_μ is in an adjoint representation. But we do not know how C_K enters in experimental and lattice data.

Conclusions. We have considered the classical pure gluonic part of QCD and shown that the CFNS decomposition arises quite naturally from the assumption that the basic color unit n-vector of CFNS is a remnant of the quark chiral field and represents a common variable of gluons and quarks. However, the presence of quark chiral DOF’s in the CFNS decomposition raises the consistency problem, because the Yang—Mills gauge field does not depend on quarks kinematically. It is this basic assumption that enables usually to consider a decomposition of the QCD gauge field separately, without invoking quarks. Thus, we should show that there are no chiral transformations involving the basic color vector m, which leave the gauge field invariant, but produce change in the quark sector.

References

Контактная информация

Novozhilov Victor Yurievich — Dr. Sci., Professor; e-mail: vnovozhilov@mail.ru