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In the paper the digital control law with multipurpose structure is considered. The statement
of stability for close-loop systems is proved. The integral action of the controllers is considered.
The statement in which it is the controller that provides integral action for close-loop system is
proved. The principles of MP-structure are considered by two examples of roll feedback control
for marine ships and roll stabilization. In the examples the comparison of PID control law and
MP-strructure are shown. Bibliogr. 9. II. 2.
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INPPOBBIE S3AKOHBI YIIPABJIEHUA C OBECITEYEHUEM
ACTATU3BMA NJId CTABWJIN3AIIVINN KPEHA MOPCKUX CYI0B

Cankr-Ilerep6yprekumii rocymapcTBeHHbIi yHUBepeuTeT, Poccuiickas Penepanus,
199034, Canxr-Ilerepbypr, YHusepcurerckas Hab., 7/9

B crarbe omnuceiBaeTcs MHOroIeseBasi CTPYKTypa 3aKOHA YIIPaBJIeHUs B HUMPOBOM BHIE.
PaccMmoTrpens! Tak»ke MOAXOABI K 06ECIIEUEHHIO acTaTU3Ma 3aMKHYTOH cucreMe. IIpuHInne: cun-
Te3a nudPOBOrO 3aKOHA YIPABJICHHUS B BHIE MHOIOLEJIEBOI CTPYKTYPbI, BKJIOYAOMENR B cebs
ACHMIITOTHYECKHAN HaOJIIOAaTeb, CKOPOCTHON PEryssTop U KOPPEKTOP, IIPOJIEMOHCTPHPOBAHBI
Ha IIpuMepax cTabuinsanuu KpeHa cynHa. [IpuBemeHo cpaBHeHHe OTPAOOTKH KOMAHIHBIX CHUI-
HajioB MHororesnessiM u 1M/ perymsropamu. Bubnuorp. 9 nass. Ui, 2.

Karouesvie crosa: 1udpoBoe yIpaBiieHue, acCTaTU3M, CTabUIN3alHsl, MHOTOIeJIEBAs CTPYK-
Typa yIpaBJICHUS.

1. Introduction. Constantly increasing marine traffic determines many problems
connected with a safety and reliability of ship motion. To provide these desirable features
of sailing, one must use various automatic systems of motion control [1-3], including such
commonly used variants as marine autopilots and roll stabilizers.
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It is well known that a ship motion is extensively influenced by different environmental
disturbances such as sea waves, winds, sea currents, change of depth under keel, etc. [1-
3]. This determines a vital demand to design control laws for marine applications with
the main goal to suppress the mentioned influence of external disturbances as much as
possible.

There are a lot of scientific publications devoted to different mathematical approaches
to the problem of autopilot design for marine ships of various types [1-4], including course
keeping and roll stabilization systems. A complexity of this direction is determined by
presence of many dynamical requirements, restrictions, and conditions, to be satisfied
by automatic control actions. Now one cannot say that a solution of the problem is
exhaustively obtained. As a result, there exist both necessity and capability to develop
mathematical methods of control laws synthesis taking into account all desirable features
of the closed-loop system’s dynamics.

To this end, in contrast to different known approaches, we propose to use ideas based
on the theory of multi-purposes control laws synthesis. Fundamentals of this theory were
firstly presented in the paper [5] with subsequent transformation in [6] to a modern level.
In recent years, some new analytical and numerical methods of synthesis were developed,
which are based on the special unified structure of the control laws for marine autopilots.

The mentioned special structure includes some basic part and several additional
separate items to be adjusted for an actual environment of sailing. The basic part is
invariant with respect to environment, but additional elements can be varied in their
dynamics, switched on or off as needed, to provide the best dynamical behavior of the
closed-loop system. As it was shown in [5-8], the central item of the structure is the so
called dynamical corrector aimed at counteraction of external disturbances.

Here we present a new mathematical and computational method of control synthesis
for digital variant of multi-purposes structure for the roll stabilization system. The main
attention is paid to the integrity action of control law with respect to external disturbances
of the unit step type.

The paper is organized as follows. In Section 2 the special structure of digital control
laws is presented and the problem of astatic correction is mathematically posed. Section 3
is devoted to the solution of the posed problem on the base of control law with multi-
purposes structure. In Section 4, we discuss peculiarity of providing integrity action for
the roll stabilization system. In Section 6 proposed approach is illustrated by the practical
example of synthesis for the transport ship with the displacement about 6000 t. Finally,
concludes this paper by discussing the overall results of the research.

2. Marine system’s control laws with multipurpose structure. Let us consider
LTT state space representation for marine ship’s mathematical model of the form

x[n + 1] = Ax[n| + Bd[n] + Hd[n],
o[n + 1] = u[n] + d[n], (1)
yln] = Cx[n]

in discrete time n € N'. Here x € E™ is the state vector, § € E™ is the vector of rudders
deflection, vector d € E' presents external disturbances, y € E* is the vector of measured
variables, and u € E™ is the vector of controls.

All matrices A;B,H and C with constant components have correspondent
dimensions. Suppose that system (1) is controllable by u and observable by y.

In general, stabilizing control law for the plant (1) can be presented as

u=W(q)y + Wol(q)d, (2)
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where g denotes backward shift operator in discrete time. Transfer matrices W and Wy
of the controller (2) are not given initially: as a rule, they should be searched as a solution
of the optimization problem

J=J(W,Wg) — W,{?%EEQ' (3)
Here functional J reflects our treatment of the quality of external disturbances suppression
for the closed-loop system (1), (2). An admissible set Q* C Q of the controllers (2) is a
restriction of the stabilizing controllers set 2. We shall determine this restriction here by
the requirement of integral action of controllers (2) with initially given multi-purposes
(MP) structure. Some algorithms for the problem (3) solving are discussed in [9].

Definition 1. Given a stable closed-loop system (1), (2), we say that this one is astatic
with respect to the input d and output y if for any dg € E! we have lim,, .o {||ya[n]||} = 0,
where yq = {y4[n]} is system response to the input step d = {d[n]},d[n] = do- 1[n]. We
also say that the correspondent controller (2) provides an integral action for this closed-
loop connection.

The main problem to be considered in this paper is to design a controller (2) with
MP-structure, providing its integral action, and optimizing its parameters in accordance
with (3). As for the performance index J, we accept that the quality of the control is
determined by maximum deflection of the output norm ||yq[r]|| for the mentioned process
with the given vector dg.

Definition 2. Given a controlled plant (1), we say that the controller (2) has MP-
structure if its mathematical model consists of the following three items:

a) asymptotic observer

z[n + 1] = Az[n] + Bd[n] + G(y[n] — Cz[n)); (4)
b) dynamical corrector
§ =F(g)(y - Cz),F(q) = [, 8,7, 0; ()
¢) observer-based corrected output
u[n] = Kxz[n| + K;d[n] + £[n]. (6)

Remark that controller (4)—(6) with MP-structure has inputs y[n], d[n], output u[n],
and state z[n] for every instant of discrete time n. The main feature of this controller is
determined by the following statement.

Theorem 1. If matrices A — GC, «a, and ( A | B

i.e. if observer, corrector and state-driving plant (by the controller u = Kyx + Ksd) are
asymptotically stable, then the closed-loop connection (1), (4)—(6) is also asymptotically
stable.

Proof. Let us consider mathematical model of the mentioned closed-loop system with
zero initial conditions:

) are Schur ones,

x[n 4+ 1] = Ax[n] + Bd[n] + Hd[n],

O[n+1] = (Em + Ks)d[n] + Kxz[n] + vyr[n], (1)
z[n + 1] = GCx[n] + Bd[n] + (A — GC)z|n],

r[n + 1] = BCx[n] — BCz[n] + ar[n],
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where r € E™ is the state vector of the corrector. We can write the characteristic
polynomial of this system as

Ez— A -B 0 0

_ 0 Enz —E,, —K;s -K, —y

AP =] _gc B E:—A+GC 0
—-6C 0 6C Enz—a

It is a matter of simple calculation to verify that the determinant here can be
transformed as follows:

A B

AR =k, E,.+K;

~det(Kz — A 4+ GC) - det(Ep, 2z — «)

that immediately proves the theorem 1.

Note that polynomial A(z) does not depend on matrices 8 and « of the corrector.
This gives us an easy possibility to choose these matrices, providing desirable dynamical
features of the close-loop system. In particular, we can design a corrector to achieve integral
action of controller (4)—(6); this is the matter of the next consideration.

3. Integral action of the controllers. The main goal of the discussion here is to
obtain conditions of integral action for the controllers with MP-structure.

To begin with, let us initially refer to the plant (1), closed by the controller (2) in
general form. It is well known that any asymptotically stable DLTT system with ¢ f-model
y = T(2)d is astatic if and only if the equality T(1) = 0 holds. On the base of this
condition, we arrive at the following statement.

Lemma 1. For the closed-loop connection (1), (2) to be astatic it is necessary and
sufficient to provide the equality

C[E - A + BW, ()W, (1) 'H=0. (8)

Proof. Let us use z-transformation to write the equations of the system under zero
initial conditions: zx = Ax + Bd + Hy, zé =u+4, u=Wy(z)x+ Wj(z)d, y=Cx.
This implies that y = C{Ez — A — B[Emz — Em — W5(2)] 7' Wi (2)} "'Hd, where Ey, is
m X m identity matrix. Consequently, the transfer matrix of the closed-loop system is

T(z) = C{Ez — A — B[Emz — E; — Ws(2)] 7' Wi (2)} 'H,

and from T(z) = 0 we have (8).
Let us consider one practically significant particular situation for the state-driving
plant (1) with the controller

u[n} = Kxx[n} + K55[n], (9)
h trices Ky, K h that matri B is Sch
ere matrices Ky, K5 are suc at matrix K, E, +K; is Schur.
Let us introduce an additional assumption that
dimy = dimdé =m; rank C =m. (10)

From the last equality follows that we can present the output equation as

y =C,Xa + Cpxp, C=(C, Cp), x=(x}x,), (11)
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where dimx, = m, dimx, = n, —m, and m x m matrix C, is not singular; from (11) we
obtain x, = C;lp — C;lCaxa. Then let us rewrite plant equation (1) supposing d =0
as follows:
x[n + 1] — x[n] = (A — E)x[n] + Bd[n]. (12)
In accordance with the dimensions of vectors x, and x, let partition the matrices
A — E and K into correspondent blocks: A —E = (A, A,), Kx = (Kzo Kgp).
We can present the equation (12) on the base of introduced notations as follows:

x[n + 1] — x[n] = (Aq — A,C, ' Ca)xa[n] + Bé[n] + A,C, y[n].
Introducing an auxiliary vector v = (x}, 0')’ € E™ and ns x ns matrix
S=(A, —-A,C.'C, B),
obtain the plant equation of the form
x[n 4+ 1] — x[n] = Sy[n] + A,,C;ly[n]. (13)

We can provide an integral action of the controller with the help of the following
statement.

Theorem 2. If we have no external disturbance for the plant (1) and if matriz S =
(Aa — A,C,'C, B) is not singular then the controller (9) can be presented in the
following equivalent form:

ufn] = p(x[n + 1] = x[n]) + vy[nl, (14)

where p=MS™"; v=K,,C,' ~MS'A,C;1; M= (K.. —K,;,C,'C. Ky).
Moreover, if the matrix v is also not singular, then the controller (14) provides an
astatic feature for the closed-loop system

x[n + 1] = Ax[n] + Bd[n] + Hd[n],
d[n +1] = (w)[n] + é[n],

uln] = plxln+ 1] = x(n]) + vyl 19)
y = Cx.
Proof. Supposing det S # 0, we can obtain vector v from (13):
v=8""(x[n+1] —x[n]) -ST'A,C,y. (16)
Now let us transform the controller (9) to the form
u=K,x + Ks6 = Kpap + Kapap + Ko = My + K, C, 1y,

and after substitution (16) we obtain equivalent control law

uln] = p(x[n +1] = x[n]) + vy[n], (17)

based on the back differences of the state vector components.

Using Lemma 1, one can verify that controller (17) provides an integral action for
system (15). Nevertheless, this verification can be realized in a more simple way. Really,
let us consider the equation of actuator jointly with the controller (17):

o[n + 1] = d[n] = p(x[n + 1] — x[n]) + vy. (18)
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If the closed-loop system (15) has an equilibrium position under action of any step external
disturbance d, then for this position the following equalities hold:

x[n+1] —x[n] =0, dn+1]—4dn] =0, Vne N,

and in correspondence with (18) we have vy = 0 . Because of the matrix v is not singular,
this linear system has the unique solution y = 0, i.e. the closed-loop system (15) is astatic.
At last, let us apply a controller with MP-structure of the form

z[n + 1] = Az[n] + Bd[n] + G(y[n] — Cz[n)),
{=F(g)(y — Cz),

F(q) = [a, 5,7,0],

uln] = p(z[n + 1] — z[n]) + vyln] + £[n],

(19)

where, in contrast with (4)—(6), corrected output is changed by analogy to (17). The
following statement determines integral action of the controller (19).

Theorem 3. If a choice of the matrices Ky, Ks, G, and « provides an asymptotic
stability of the closed-loop system (7), if the matrices p and v are determined by formula
(14), and if additionally equality F(1) = O holds, then this system is astatic with respect
to input d and outputy.

Proof. First, let us prove that the closed-loop connection (1), (19) is also
asymptotically stable. To this end, let refer to the formula (14) and obviously obtain

wA—E)+vC =Ky, uB=Ks;. (20)
Taking into account the following identity:
z[n + 1] — z[n] = (A — E)z[n] + Bd[n] + GC(x[n] — Cz[n]),
we have

uln] = p(z[n] — z[n]) + vy[n] +yrln] =
= u{(A — E)z[n] + Bd[n] + GC(x[n] — Cz[n])} + vCx[n] + yr[n].

Using the control signal (21) we can present mathematical model of the closed-loop
connection (1), (19) as follows:
x[n + 1] = Ax[n] + Bd[n] + Hd[n],
dn+ 1] = (uGC + vC)x[n] + (uB + E,;,)d[n] + u(A — E — GC)z[n| + yr[n],
z[n + 1] = GCx[n| + Bd[n] + (A — GC)z[n],
r[n + 1] = BCx[n] — Cz[n] + ar[n].

By the analogy with the proof of Theorem 1, we can write the characteristic
polynomial of this system as

(21)

(22)

Ez— A -B 0 0
A(z) = —uGC—-vC Epz—E, —uB —u(A—-FE—-GC) —y
7= —Gc -B E:— A +GC 0
—pC 0 GC Ehz—«
Then, taking into account the equalities (20), one can easyly obtain representation
A=A Bl det(Br— A+ GC) - det(En, 2 — )
z) = K, E, +K; et(Ez et(Ep, 2z —

that confirms asymptotic stability.

113



Next, let us use equation of the actuators jointly with control signal u:
6[n+1] = d[n] = (u(z[n + 1] — z[n]) + vy[n] + F(q)C(x[n] — z[n)). (23)

As well as for Theorem 2, if the closed-loop system (22) has an equilibrium position under
action of the any step external disturbance d, then for this position the following equalities
hold:

x[n+1] —x[n] =0, dn+1]—4dn]=0, Vne N

So, in accordance with (23), taking into account F(1) = 0, we obviously obtain vy = 0.
Because we have supposed that the matrix v is not singular, this linear system has the
unique solution y = 0, i.e. the closed-loop system (22) is astatic. End proof.

One can observe that the proven theorems determine some freedom of the choice
for the items of MP-structure. This allows realizing integral action of the controller and
additionally optimizing (in the sense of (3)) a closed-loop connection sequentially by the
coeflicients of the base controller, the matrix of observer, and the transfer matrix of the
corrector.

4. Roll feedback control for marine ships. Modern marine roll stabilization
systems have a significant impact on performance of ships and various marine structures
allowing them to perform their mission in severe sea conditions during long periods of
time [3]. These systems should be designed and constructed to avoid large values of the
roll angle in any environmental conditions of sailing. In particular, this motivates a desire
to synthesize control laws with integral action to stand up against step type external
disturbances. Let us accept the simplest equations [3], presenting roll motion of the ship
as follows: N

. x A

w = Tt o)’ 0 =w. (24)
In formula (24) 6 is the roll angle, w is the roll rate. Variable N, presents the generalized
roll torque, which can be calculated by formula

N, = —mgJypw — mghof + 1 V26 + My + M,

where My, = c3V?2§ — c3Vw is the moment determined by actions of the board roll wings;
0 is the angle of wing’s deflection; M, is the torque from external forces; V' is the constant
speed of the motion; J,, is the moment of ship’s inertia. Parameters m, mg, hq, c1, c2 and
c3 are given constants depending on constructive features of the specific ship.

LTI mathematical model of a ship’s roll motion in continuous time is as follows:

x = Ax +bu +d(t), (25)
where x = (w 0 §)’ is the state vector, A and b are the matrices of the form
al ag b O
A=(1 0 0|, b=10
0 0 —k kg

with constant components a1, az, kg.
Let us obtain correspondent DLTT model in discrete time after discretization by the
Euler method with the constant sample period At:

x[n + 1] = Agx[n] + bgu[n] + d4[n], (26)
here Ad = E3><3 + AtA, bd = Atbu, dd [n} = Atd(nAt)
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As for the measured and controlled variable y, we accept the roll angle as the system
output:
y=cx, ¢c=(0 1 0). (27)
Let us apply controller (19) with MP-structure for the roll stabilization system on the
base of approach proposed above. Note that for this particular case one can present the
mentioned controller as follows:

zi[n + 1] = z1[n] + Atag z1[n] + Atagza[n] + Atbo[n] + g1 (0[n] — 22[n]),
z2[n + 1] = 22[n] + Atzi[n] + g2(0[n] — 22[n)),

§ = F(q)(0[n] — =[n]),

u = pr(zi[n + 1] = 21[n]) + pa(z2[n + 1] = 22[n]) + v0 + 6 + €.

(28)

To calculate unknown parameters of the controller (28), we can apply the following
sequential scheme in accordance with the properties and features of MP-structure discussed
in the preceding sections.

1. First, it is necessary to find the base state controller of the form

u = klw + k26 + k’g(g = kCX, where kc = (kl kg k’g) (29)

This one is used as a state-driving initial feedback for the controlled plant (26) providing
stability and desirable dynamical features of the closed-loop connection (26), (29). For
example, the state controller can be obtained as a solution of well-known LQR-optimization
problem, or as a solution of the problem (3).

2. Secondly, one needs to recalculate obtained parameters ki, ko, k3 into the
coefficients p11, pe, and v, using formulas (10), (11), and (14).

3. Thirdly, we have to obtain coefficients g; and gs of the asymptotic observer. This
item of the scheme is aimed to providing observer stability and to guarantee desirable
dynamical features of the closed-loop system under actions of the step-type external
disturbances. In particular case, Kalman filter is quite suitable to be used for these
purposes; another variant is also based on the solution of the problem (3).

4. The last position of the scheme consists of the corrector adjustment, i.e. we need
to find a transfer function F'(q) of the corrector. This one must have Schur denominator
and should provide desirable dynamics of the closed-loop system under actions of sea
wave external disturbances. The simplest variant of the correction is its full absence in
the controller structure. The most complicated one assumes that the transfer function
F(q) is a solution of the correspondent problem (3): this is a subject of detailed discussion
presented in the paper [7]. Hear we restrain our consideration only by the integral action
of the controller.

5. Roll stabilization example. Let us illustrate a practical implementation of the
scheme presented above by the example of the roll stabilizer synthesis for the transport
ship with the displacement about 6000 t.

Assume that we have given mathematical model (25), (27) of the roll ship motion
with the following values of the parameters:

a1 = —0.150, as = —0.360, b= —0.0480, k, = 15.

It is necessary to take into account that deflections of the board wings and the rate
of these deflections are limited by the following values correspondently:

Smax = 30°, dmax = 35°/s.

Let us accept the sampling period At = 0.5 s for the discrete model (26).
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In accordance with the first step of the scheme, we can pose the problem (3) for the
plant (26) closed by the controller

w = kyw + ko (0 — 0%) + k3 = kex — ko0, (30)

where 0* = 3° is given reference signal for the roll angle. The functional J in (3) is
presented by the roll overshoot, and admissible set of the vectors k. is determined by
desirable stability degree ds(k.) < 0.95 of the closed-loop connection.

As a result of optimization, we obtain the following coefficients of the base controller
(29): k1 = 11.3, k2 = —0.200, k3 = —0.0355. Correspondent transient process for this
controller is presented on the fig. 1, where command signal is determined as § = —[kjw +
k(0 — 0)]ks.

deg
4

I

-30 ' ‘ : ‘ : 1,8
0 5 10 15 20 25 30

Fig. 1. Transient process for the system (26), (30)

a — roll angle; b — command signal; ¢ — rudder deflection.

Simple computations in accordance with the formulas (10), (11), and (14) allow to
obtain the following coefficients p and v for the controller (28): p1 = 21.6, s = 14.5,
v ="7.57.

Then, by analogy, we obtain coefficients g1 = 0.363, go = 1.85 of the asymptotic
observer.

Finally, supposing that the sailing is not disturbed by sea waves, we can switch off a
corrector, i.e. accept F(q) = 0.

To demonstrate the results of synthesis, let us consider stabilization process for the
closed-loop system under influence of the step-type external disturbance d(t) = do - 1(¢),
do = 1. For the comparison, we use PID-controller of the form

t t
u=kiw + ko0 + k30 + k:i/H(T)dT =kex + kiC/X<T)dT (31)
0 0

for the same process (k;) = 1.5.
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Stabilization processes for the closed-loop systems (26), (28) and (26), (31)
correspondently are illustrated by fig. 2.
A — MP-structure B —PID-structure

a a

deg

S — N W

|
—_

20t - 20+
10 ¢ 10+

30

10 ¢

0 I A 1 I "
0 10 20 30 0 10 20 30

Fig. 2. Stabilization processes for the step-type external disturbance

a — roll angle; b — command signal; ¢ — rudder deflection.

The comparison of the presented processes shows that the synthesized controller (28)
with MP-structure provides 25% decrease of the settling time and overshoot with respect
to the controller (31) with traditional PID-structure.

6. Conclusions. The main goal of this work is to propose a constructive method of
marine roll stabilizer synthesis to provide an astatic property of the closed-loop connection.
In contrast to well-known approaches, usually based on PID-structures of control laws,
we achieve this goal using a controller with the special multi-purposes structure. In our
opinion, this method provides a certain flexibility of the control law with respect to an
actual environment of sailing. The mentioned dynamical features of the control law (19)
with MP-structure grant such flexibility. Here we can select the considered corrective term
subject to a current regime of the ship motion in the following variants:

1. If a ship moves under condition of quiet water, we can fully switch off the dynamical
corrector in control law and use simplified controller (4), (6) with no astatic feature working
in the spared regime.

2. If we have a motion under significant step-type disturbances, but no sea wave, it
is quite suitable to accept the control law (19) with no corrector, providing an integral
action of the controller that does not overload the system by additional useless dynamics.

3. If sea wave also influences to the ship motion, we can switch on the corrector for
the controller (19), using them in accurate roll stabilization regime [8], and keeping an
integral property to react against step-type disturbances.
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4. At last, to use economical regime of stabilization, we can change a transfer matrix
of the corrector for the notch filtering action in accordance with recommendations [7], also
keeping integral action of the controller.

We believe that the approach proposed here can be useful not only for the surface
ships, but also for various kinds of AUVs and flying offshore structures roll stabilizers
design. The results of investigations presented above can be developed to take into account
transport delays and robust features of the control law.
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