THE QUASIDIFFERENTIAL CALCULUS, SEPARATION OF CONVEX SETS AND THE DEMYANOV DIFFERENCE

1 Adam Mickiewicz University, 87, ul. Umultowska, Pozna, ZIP: 61-614, Poland
2 Karlsruhe Institute of Technology University, 89, Kaiserstrasse, Karlsruhe, ZIP: 76-133, Germany

In this paper we give a survey of the influence of the quasidifferential calculus of V. F. Demyanov and A. M. Rubinov to the field of generalized convexity. In particular, we will show the strong relations between the order cancellation property of bounded closed convex set and the separation property of bounded closed convex sets by sets. Moreover, a generalization of the Demyanov difference of compact convex sets infinite dimension and its role in the context of convex sets by sets is discussed. Refs 15. Figs 2.

Keywords: quasidifferential calculus, convex sets, subdifferential calculus, generalized convexity.

1. Introduction.

The quasidifferential calculus which was developed by V. F. Demyanov and A. M. Rubinov around 1980 (see [1, 2]) looks at the first glance as an exact subdifferential calculus for pairs of subdifferentials which satisfies the classical rules of additivity and the Leibniz rules. However, a closer view shows that the quasidifferential calculus had far-reaching consequences on generalized convexity which did lead to a fun-
damental reconsideration of the algebraic and geometric properties of the semigroup of bounded closed convex sets. It created a new theory on minimal representation of the elements of the Minkowski–Rådström–Hörmander lattice which consist of equivalence classes of pairs of bounded closed convex sets. For details we refer to the book [1].

We begin our paper with a short description of the basics of quasidifferential calculus and point out in particular its close analogy to the classical Fréchet differential calculus. Then we switch to generalized convexity and continue with the Minkowski duality. Within this context we discuss in details a separation theory for bounded closed convex sets by convex sets [3] and present a generalization of the Demyanov difference for closed bounded convex sets in arbitrary Banach spaces [4]. Here we point out in particular the very natural connection between the algebraic lattice rules and their geometric counterparts for convex sets. Exemplarily we discuss this point in detail for the order cancellation law which has the separation law for convex sets by sets as a geometric counterpart and which gives rise to a new research direction that could be called geometric algebra for convex sets.

At the end of the paper we show that in a locally convex vector space the generalized Demyanov difference of two closed bounded convex sets gives is a separating set.

2. The quasidifferential calculus. We begin with a short survey on the fundamental concept of quasidifferentiation.

Definition 1. Let X be a normed linear space and $U \subseteq X$ an open set. A function $f : U \rightarrow \mathbb{R}$ is quasidifferentiable at $x_0 \in U$ if f is continuous at x_0 and

a) for every $v \in X \setminus \{0\}$ the directional derivative

$$\left. \frac{df}{dv} \right|_{x_0} = \lim_{t \to 0^+} \frac{f(x_0 + tv) - f(x_0)}{t}$$

exists;

b) the mapping

$$Df|_{x_0} : X \rightarrow \mathbb{R} : v \mapsto \left. \frac{df}{dv} \right|_{x_0}$$

$$\in \text{DCH}(X)$$

There exists an obvious similarity between quasidifferentiation and the Fréchet differential calculus in finite dimensional spaces, by extending the notion of a derivative from a linear functional to a difference of sublinear functions. The next theorem is taken from [5, theorem 10.2.6].

2.1. The Fréchet property.

Theorem 1. Let $(X, \| \cdot \|)$ be a finite-dimensional normed vector space, $U \subseteq X$ an open subset and $f : U \rightarrow \mathbb{R}$ a locally Lipschitz function. Then f is quasidifferentiable at $x_0 \in U$ if and only if there exists an element $\left. df \right|_{x_0} \in \text{DCH}(X)$ such that for every $\varepsilon > 0$ there exists a $\delta > 0$, such that for all $h \in U$ with $\| h \| \leq \delta$ and $x_0 + h \in U$ the following inequality:

$$|f(x_0 + h) - f(x_0) - \left. df \right|_{x_0}(h)| \leq \varepsilon \| h \|$$

holds.

Proof. The sufficiency is obvious. Now let f be a locally Lipschitz function which is quasidifferentiable. Then we have to show that the condition (FP) is satisfied. Assume that this is not true. Then there exists a locally Lipschitz quasidifferentiable function,
Since $f : U \to \mathbb{R}$ is locally Lipschitz, there exists a ball $B(x_0, r) \subseteq U$ and a real number $M > 0$, such that for all $x, y \in B(x_0, r)$ we have $|f(x) - f(y)| \leq M||x - y||$. Now define: $g_k = \frac{df}{d\alpha_k}$ and choose a convergent subsequence, also denoted by $(g_k)_{k \in \mathbb{N}}$, with $\lim g_k = g$ and $\lim \alpha_k = 0$, where $\alpha_k = \frac{|h_k|}{k}$. Then for all $k \in \mathbb{N}$ we have

$$
\left| f(x_0 + \alpha_k g_k) - f(x_0) - df_{x_0}(\alpha_k g_k) \right| =
$$

$$
= \left| f(x_0 + \alpha_k g_k) + f(x_0 + \alpha_k g) - f(x_0) - f(x_0 + \alpha_k g_k) - f(x_0) - df|_{x_0}(\alpha_k g_k) \right| =
$$

$$
\geq \left| f(x_0 + \alpha_k g_k) - f(x_0) - df|_{x_0}(\alpha_k g_k) \right| =
$$

$$
\geq \left| (f(x_0 + \alpha_k g_k) - f(x_0 + \alpha_k g_k)) + df|_{x_0}(\alpha_k g_k) - df|_{x_0}(\alpha_k g_k) \right| =
$$

$$
\geq \left| f(x_0 + \alpha_k g_k) - f(x_0) - df|_{x_0}(\alpha_k g_k) \right| =
$$

$$
\geq \left| \frac{\varepsilon_0 \alpha_k r - (M \alpha_k ||g_k - g|| + L \alpha_k ||g_k - f||)}{2} \right|
$$

There exists an index $k_0 \in \mathbb{N}$ such that for all $k > k_0$

$$
\varepsilon_0 r - M||g_k - g|| - L||g_k - f|| \geq \frac{\varepsilon_0 r}{2},
$$

where L denotes the Lipschitz constant of $df|_{x_0}$. Hence for all $k \geq k_0$ we have

$$
\left| \frac{f(x_0 + \alpha_k g) - f(x_0)}{\alpha_k} - df|_{x_0} \right| \geq \frac{\varepsilon_0 r}{2},
$$

which implies that the directional derivative of the function f in direction g at the point $x_0 \in U$ does not exist. But this is a contradiction to the assumption, that $f : U \to \mathbb{R}$ is quasidifferentiable at $x_0 \in U$. \hfill \Box
From the Fréchet property follows for quasidifferentiable real valued functions in finite dimensional spaces immediately:
\[
 d(\alpha f + \beta g)|_{x_0} = \alpha\, df|_{x_0} + \beta\, dg|_{x_0}, \quad \alpha, \beta \in \mathbb{R},
\]
\[
 d(fg)|_{x_0} = f(x_0)\, dg|_{x_0} + g(x_0)\, df|_{x_0},
\]
\[
 d\left(\frac{f}{g}\right)|_{x_0} = \frac{g(x_0)\, df|_{x_0} - f(x_0)\, dg|_{x_0}}{f(x_0)^2}, \quad f(x_0) \neq 0.
\]

Let us state, that V. F. Demyanov and A. M. Rubinov proved this rules for arbitrary Banach spaces.

2.2. A Banach space norm for DCH(X). A further important property of the Fréchet differential calculus in a Banach space is a Banach space, endowed with the norm \(\| \cdot \| \) given by
\[
 \| \varphi \|_\Delta = \inf_{\varphi = p - q} \left\{ \max \left\{ \sup_{\|x\| \leq 1} p(x), \sup_{\|x\| \leq 1} q(x) \right\} \right\},
\]
where the infimum is taken over all continuous sublinear functions \(p, q \) such that \(\varphi = p - q \), is a Banach space.

Proof. First we show that \(\| \varphi \|_\Delta \) is well defined for \(\varphi \in \text{DCH} \) and that \(\| \cdot \|_\Delta \) is a norm.

Let \(\varphi = p - q \in \text{DCH}(X) \) be given. From \(p(0) = q(0) = 0 \) it follows that \(\| \varphi \|_\Delta \geq 0 \). Since \(p, q \) are Lipschitz continuous, \(\| \varphi \|_\Delta < +\infty \). From the definition of \(\| \cdot \|_\Delta \) it follows that for all \(\varphi \in \text{DCH}(X) \) and \(t \in \mathbb{R} \) the homogeneity condition \(\| t\varphi \|_\Delta = |t|\|\varphi\|_\Delta \) holds. Next we prove the triangle inequality.

Let \(\varepsilon > 0 \) be given and let \(p_1, p_2, q_1, q_2 \) be continuous sublinear functions with \(\varphi_1 = p_1 - q_1, \varphi_2 = p_2 - q_2 \in \text{DCH}(X) \) and
\[
 \| \varphi_1 \|_\Delta \leq \max \left\{ \sup_{\|x\| \leq 1} p_1(x), \sup_{\|x\| \leq 1} q_1(x) \right\} \leq \| \varphi_1 \|_\Delta + \varepsilon,
\]
\[
 \| \varphi_2 \|_\Delta \leq \max \left\{ \sup_{\|x\| \leq 1} p_2(x), \sup_{\|x\| \leq 1} q_2(x) \right\} \leq \| \varphi_2 \|_\Delta + \varepsilon.
\]
Now we have
\[
 \| \varphi_1 + \varphi_2 \|_\Delta \leq \max \left\{ \sup_{\|x\| \leq 1} [p_1(x) + p_2(x)], \sup_{\|x\| \leq 1} [q_1(x) + q_2(x)] \right\} \leq \max \left\{ \sup_{\|x\| \leq 1} p_1(x) + \sup_{\|x\| \leq 1} p_2(x), \sup_{\|x\| \leq 1} q_1(x) + \sup_{\|x\| \leq 1} q_2(x) \right\} \leq \| \varphi_1 \|_\Delta + \| \varphi_2 \|_\Delta + 2\varepsilon.
\]
remains to show that implies obviously the completeness of the space DCH continuous sublinear functions. We write (space

More precisely: V. F. Demyanov and A. M. Rubinov used an other approach via the Minkowski duality.

the above presentation of the quasidifferential as a difference of two sublinear functions, dual norm of continuous sublinear functions.

We show that the series elements of DCH are uniformly convergent on the unit ball of

index

Let

be an arbitrary positive number and let

be continuous sublinear functions with

and we endow the dual space with the weak-

pairing.

It follows from the definition of the norm such that for all

This convergence.

Moreover, the sequences and have limits and which are also continuous sublinear functions. We write

Clearly, the quasidifferential calculus we have to deal with a normed vector space

Different from Further metrics for DCH(X) are the Demyanov and the Hausdorff metric which are studied in detail in [7].

2.3. The approach of V. F. Demyanov and A. M. Rubinov. Different from the above presentation of the quasidifferential as a difference of two sublinear functions, V. F. Demyanov and A. M. Rubinov used another approach via the Minkowski duality. More precisely:

The triangle inequality follows from the arbitrariness of

Since

have the limits, there exists an

such that for

The arbitrariness of

implies that the series is norm-convergent in the space DCH(X).

Further metrics for DCH(X) are the Demyanov and the Hausdorff metric which are studied in detail in [7].

The dual norm of

will be denoted by and stands for the dual pairing.

Вестник СПбГУ. Прикладная математика. Информатика... 2018. Т. 14. Вып. 1
Moreover, let us denote by \(\mathcal{K}(X') \) the set of all compact convex subsets of the dual space \(X' \) endowed with the weak-\(* \)-topology \(\sigma(X, X') \). It follows from the theorem of Alaoglu–Bourbaki that the elements of \(\mathcal{K}(X') \) are bounded in the dual norm.

Now L. Hörmander [8] showed that an arbitrary sublinear function \(p : X \to \mathbb{R} \) is continuous in the norm topology if and only if its subdifferential at the origin
\[
\partial p|_0 = \{ v \in X' \mid \langle v, x \rangle \leq p(x), \ x \in X \}
\]
is a compact convex subset of the dual space \(X' \) with respect to the weak-\(* \)-topology \(\sigma(X, X') \) of \(X' \) and that \(p : X \to \mathbb{R} \) has the representation \(p(x) = p_A(x) = \max_{a \in A} \langle a, x \rangle \) with \(A = \partial p|_0 \in \mathcal{K}(X') \).

To formalize this assignment more precisely, let us consider the set \(\mathcal{K}^2(X')_{/\sim} \) of all equivalence classes of pairs \((A, B) \in \mathcal{K}^2(X') \). For two pairs of nonempty compact convex subsets the following relation \((A, B) \sim (C, D) \iff p_A + p_D = p_B + p_C \). Two pairs \((A, B) \) and \((C, D) \) which satisfy this relation are called equivalent, and \(\mathcal{K}^2(X')_{/\sim} \) is the linear space of all classes of equivalent pairs. The element of \(\mathcal{K}^2(X')_{/\sim} \) which contains the pair \((A, B) \) is denoted by \([A, B] \in \mathcal{K}^2(X')_{/\sim}\). In 1966 A. G. Pinsker [9] introduced the following ordering on \(\mathcal{K}^2(X')_{/\sim} \), namely: \([A, B] \preceq [C, D] \iff p_A + p_D \leq p_B + p_C \), which is independent of the special choice of representatives, because of the order cancellation law.

The space \(\left(\mathcal{K}^2(X')_{/\sim}, \preceq \right) \) is called the Minkowski–Rådström–Hörmander space of classes of pairs of nonempty compact convex sets. It is a complete vector lattice and a direct calculation shows that the assignment:
\[
\text{DCH}(X) \longrightarrow \mathcal{K}^2(X')_{/\sim}
\]
with \(\varphi \mapsto [\varphi] = \{ (\partial p|_0, \partial q|_0) \mid \text{with } \varphi = p - q, \ p, q \text{ continuous and sublinear} \}
\]
is a lattice isomorphism, called Minkowski duality (see [5, theorem 3.4.3]). Note that it is not a Banach lattice with respect to the norm \(\| \cdot \|_\Delta \) given in theorem 2.

V. F. Demyanov and A. M. Rubinov assigned to \(\varphi \in \text{DCH}(X) \) the set
\[
[\varphi] = \{ (\partial p|_0, \partial q|_0) \mid \text{with } \varphi = p - q, \ p, q \text{ continuous and sublinear} \} \in \mathcal{K}^2(X')_{/\sim}
\]
and considered the set \(\mathcal{K}^2(X')_{/\sim} \) of all equivalence class of pairs \((A, B) \in \mathcal{K}^2(X') \) instead of differences of sublinear functions. They reformulated condition b) of Definition 1 in the following way:
\[\text{b'} \]. There exist two sets \(\overline{\partial f}|_{x_0}, \overline{f}|_{x_0} \in \mathcal{K}(X') \) called sub- and superdifferential such that
\[
g = \frac{df}{dg}\bigg|_{x_0} = \max_{w \in \overline{\partial f}|_{x_0}} \langle w, g \rangle + \min_{w \in \overline{f}|_{x_0}} \langle w, g \rangle = \max_{w \in \overline{\partial f}|_{x_0}} \langle w, g \rangle - \max_{w \in \overline{f}|_{x_0}} \langle w, g \rangle \in \text{DCH}(X).
\]

The pair \(\partial f|_{x_0}, \overline{f}|_{x_0} \) consisting of a sub- and superdifferential is called a quasidifferential of \(f \) at \(x_0 \in U \) and for the class of all equivalent pairs holds:
\[
[\overline{\partial f}|_{x_0}, -\overline{f}|_{x_0}] \in \mathcal{K}^2(X')_{/\sim}
\]
which is an element of the the Minkowski–Rådström–Hörmander lattice.

Вестник СПбГУ. Прикладная математика. Информатика... 2018. Т. 14. Вып. 1 25
In the Section 3 we one step further towards generalised convexity and geometric algebra for arbitrary topological vector spaces (see also [10]).

3. The semigroup of closed bounded convex sets. For a Hausdorff topological real vector space \((X, \tau)\) let us denote by \(A(X)\) the set of all nonempty subsets of \(X\), by \(B^*(X)\) the set of all nonempty bounded subsets of \(X\), by \(C(X)\) the set of all nonempty closed convex subsets of \(X\), by \(B(X) = B^*(X) \cap C(X)\) the set of all bounded closed convex sets of \(X\) and by \(K(X)\) the set of all nonempty compact convex subsets of \(X\). For \(A, B \in A(X)\) the algebraic sum is defined by \(A + B = \{ x = a + b \mid a \in A \text{ and } b \in B \}\) and for \(\lambda \in \mathbb{R}\) and \(A \in A(X)\) the multiplication is defined by \(\lambda A = \{ x = \lambda a \mid a \in A \}\).

The Minkowski sum for \(A, B \in A(X)\) is defined by
\[
A + B = \text{cl}(\{ x = a + b \mid a \in A \text{ and } b \in B \}),
\]
where \(\text{cl}(A) = \bar{A}\) denotes the closure of \(A \subset X\) with respect to \(\tau\).

For a Hausdorff topological real vector space \(X\) two pairs \((A, B), (C, D) \in B^2(X) = B(X) \times B(X)\) are called equivalent if \(B + C = A + D\) holds and \([A, B]\) denotes the equivalence class represented by the pair \((A, B) \in B^2(X)\). An ordering among equivalence classes is given by \([A, B] \leq [C, D]\) if and only if \(A + D \subseteq B + C\). This is the ordering on the Minkowski–Rådström–Hörmander space and is independent of the choice of the representatives. Note that this definition is a natural extension of the former definition of "equivalence" and "ordering" for compact convex subsets of the dual space \(X'\) from a Banach space \(X\) endowed with the weak* topology \(\sigma(X, X')\).

For \(A \in B(X)\) we denote by \(\text{ext}(A)\) the set of its extreme points and by \(\text{exp}(A)\) the set of its exposed points (see [5]). Next, for \(A, B \in A(X)\) we define \(A \vee B = \text{cl} \text{ conv}(A \cup B)\), where \(\text{conv}(A \cup B)\) denotes the convex hull of \(A \cup B\). We will use the abbreviation \(A + B \vee C\) for \(A + (B \vee C)\) and \(C + d\) instead of \(C + \{d\}\) for all bounded closed convex sets \(A, B, C \in A(X)\) and a point \(d \in X\).

A distributivity relation between the Minkowski sum and the maximum operation is expressed by the Pinsker Formula (see [9]), which is stated in a more general form in [5].

Proposition 1. Let \((X, \tau)\) be a Hausdorff topological vector space, \(A, B, C \in A(X)\) and \(C\) be a convex set. Then
\[
(A \vee C) \vee (B \vee C) = C \vee (A \vee B).
\]

The following generalization of the Minkowski–Rådström–Hörmander Theorem is due to R. Urbański [11].

Theorem 3. Let \(X\) be a Hausdorff topological vector space. Then for any \(A \in A(X)\), \(B \in B^*(X)\) and \(C \in C(X)\) the inclusion
\[
A + B \subseteq C + B \text{ implies } A \subseteq C.
\]

This implies that \(B(X)\) endowed with the Minkowski sum "\(+\)" and the ordering induced by inclusion is a commutative ordered semigroup (i.e., a ordered set endowed with a group operation, without having inverse elements), which satisfies the order cancellation law and contains \(K(X)\) as a sub-semigroup.

4. The separation law for convex sets. In this section we study a generalized separation property for convex sets.

Definition 2. Let \(X\) be a topological vector space, \(I\) be a finite index set and \(S, A_i \in B(X), i \in I\). We say that the set \(S\) separates the sets \(A_i, i \in I\), if and only if \((\text{conv}\{a_i \mid i \in I\}) \cap S \neq \emptyset\) for every collection \(a_i \in A_i, i \in I\).

The definition is illustrated in Figure 1 for the convex sets \(A_1, A_2, A_3, S \subseteq \mathbb{R}^2\). We will
use the notation $\bigvee_{i \in I} \{a_i\}$ for $\text{conv}\{a_i \mid i \in I\}$ and write $\sum_{i=1}^{k} A_i = A_1 + A_2 + \cdots + A_k$.

Now we have the following algebraic characterization of the separation property.

Theorem 4. Let X be a topological vector space, I be a finite index set and $S, A_i \in \mathcal{B}(X), i \in I$. Then S separates the sets A_i, $i \in I$, if and only if

$$\sum_{i \in I} A_i \subset \bigvee_{i \in I} \left(\sum_{k \in I \setminus \{i\}} A_k \right) + S.$$

Proof. Necessity. Let $a_i \in A_i, i \in I$, be given. Then there exist $\alpha_i \geq 0, \sum_{i \in I} \alpha_i = 1$ such that $\sum_{i \in I} \alpha_i a_i \in S$. Therefore,

$$\sum_{i \in I} a_i = \sum_{i \in I} \left(\sum_{k \in I \setminus \{i\}} \alpha_k \right) a_i + \sum_{i \in I} \alpha_i a_i =$$

$$= \sum_{i \in I} \alpha_i \left(\sum_{k \in I \setminus \{i\}} a_k \right) + \sum_{i \in I} \alpha_i a_i \in \bigvee_{i \in I} \left(\sum_{k \in I \setminus \{i\}} A_k \right) + S,$$

which proves the necessity.

Sufficiency. Now fix any $a_i \in A_i, i \in I$. Then it follows from the assumption:

$$\sum_{i \in I} A_i \subset \bigvee_{i \in I} \left(\sum_{k \in I \setminus \{i\}} A_k \right) + S$$

that for every $i \in I$

$$a_i + \sum_{k \in I \setminus \{i\}} A_k \subset \bigvee_{i \in I} \left(\sum_{k \in I \setminus \{i\}} A_k \right) + S,$$

which means

$$\sum_{k \in I \setminus \{i\}} A_k \subset \bigvee_{i \in I} \left(\sum_{k \in I \setminus \{i\}} A_k \right) + (S - a_i), \ i \in I.$$

From the Pinsker formula we get
\[
\bigvee_{i \in I} \left(\sum_{k \in I \setminus \{ i \}} A_k \right) \subset \bigvee_{i \in I} \left[\bigvee_{k \in I \setminus \{ i \}} A_k \right] \cup \left(S - a_i \right) = \bigvee_{i \in I} \left(\sum_{k \in I \setminus \{ i \}} A_k \right) + \bigvee_{i \in I} \left(S - a_i \right)
\]

gives by the order cancellation law that \(0 \in \bigvee_{i \in I} \left(S - a_i \right) \).

Now again by the Pinsker formula we get \(0 \in \bigvee_{i \in I} \left(S - a_i \right) = \bigvee_{i \in I} \{ -a_i \} \), which implies that \((\text{conv} \{ a_i \mid i \in I \}) \cap S \neq \emptyset\). \(\square \)

Parallel to the notation of separation the notation of shadowing is also used (see [5, p. 67 and 77]) to express the same property. Namely the physical interpretation of the separation by sets is as follows: if the sets \(A, B, S \) are considered as celestial and \(A \) shines, then \(S \) separates \(A \) and \(B \) if and only if \(B \) lies in the shadow of \(S \). Of special interest is the separation of two sets \(A \) and \(B \) by a convex set \(S \), the case \(A, B, S \in \mathcal{B}(X) \) which is depicted on the left hand side of in Figure 2.

Then \(S \) separates the sets \(A, B \) if and only if

\[
A + B \subset A \lor B + S. \quad \text{(SL)}
\]

The formula (SL) is called the separation law. Now it turns out that the separation law is equivalent to the order cancellation law, as we will see in the following section.

5. The separation and the order cancellation law.

Theorem 5. Let \(A, B \) be nonempty subsets of a topological vector space \(X \) and assume that \(A \lor B \in \mathcal{B}(X) \). Moreover, let \(S \) be a closed convex subset of \(X \). Then \(S \) separates the sets \(A \) and \(B \) if and only if

\[
A + B \subset A \lor B + S.
\]

Proof. Necessity. Fix any \(a \in A \) and \(b \in B \). Then it follows from the assumption \(A + B \subset A \lor B + S \) that \(a + B \subset A \lor B + S \) and \(b + A \subset A \lor B + S \). Hence \(B \subset A \lor B + S - a \) and \(A \subset A \lor B + S - b \). By this inclusions and the Pinsker formula (PF) we have \(A \lor B \subset A \lor B + (S - a) \lor (S - b) \subset A \lor B + (S + [-a, -b]) \). Now we obtain from the order cancellation law (olc) that \(0 \in S + [-a, -b] \). Hence \([a, b] \cap S \neq \emptyset\).

Sufficiency. Now assume that formula (SL) is satisfied. Let \(A, B, C \in \mathcal{A}(X) \) and assume that \(B \) is bounded and \(C \) is closed and convex. Now take any \(a \in A \) and \(b \in B \). From \(A + B \subset B + C \) it follows that \(a + (B - b) \subset (B - b) + C \). Therefore, \(\{0\} + (B - b) \subset (B - b) \lor \{0\} \lor (C - a) \). Now from the separation law (SL) it follows that the set \(C - a \) separates the sets \(\{0\} \) and \(B - b \). Hence \(0 = a\alpha + \beta \beta \in C - a \) for some \(\alpha, \beta \geq 0 \), \(\alpha + \beta = 1 \). So, we have \(0 \in C - a \). Hence \(A \subset C \). \(\square \)

6. The Demyanov difference. Demyanov original subtraction \(A - B \) (see [12]) of compact convex subsets in finite dimensional space is defined with the help of the Clarke subdifferential (see [13]) of the difference of support functions, i. e.

\[
A - B = \partial_C (p_A - p_B) |_0^\alpha.
\]

Figure 2. The case \(A, B, S \in \mathcal{B}(X) \)
where p_A and p_B are the support functions of A and B, i.e. $p_A(x) = \max_{a \in A} \langle a, x \rangle$. This can be equivalently formulated by

$$A^- B = \text{conv}\{a - b | a \in A, b \in B, a + b \in \text{exp}(A + B)\},$$

here $\text{exp}(A + B)$ are the exposed points of $A + B$. For the proof see Proposition 2 in [12] and note that every exposed point of $A + B$ is the unique sum of an exposed point of A with an exposed point of B.

To extend the definition of the difference $A^- B$ to locally convex topological vector spaces, the set of exposed points will be replaced by the set of extremal points of $A + B$. This leads to the following generalization of the Demyanov difference.

Definition 3. Let (X, τ) be a locally convex vector space and $K(X)$ the family of all nonempty compact convex subsets of X. Then for $A, B \in K(X)$ the set

$$A^- B = \text{conv}\{a - b | a \in A, b \in B, a + b \in \text{ext}(A + B)\} \in K(X)$$

is called the **Demyanov difference** of A and B.

This is a canonical generalization of the above definition, because for every $A, B \in K(X)$ every extremal point $z \in \text{ext}(A + B)$ has a unique decomposition $z = x + y$ into the sum of two extreme points $x \in \text{ext}(A)$ and $y \in \text{ext}(B)$ (see [14, Proposition 1]). Since in the finite dimensional case the exposed points are dense in the set of extreme points of a compact convex set, this definition coincides with the original definition of the Demyanov difference in finite dimensional spaces. Note that in [4] a generalization of the Demyanov difference to arbitrary topological vector spaces is also given.

The Demyanov difference possesses many important properties and in [15] the following statement is proved.

Proposition 2. Let X be a locally convex vector space and $A, B, C \in K(X)$. The Demyanov difference has the following properties:

1. If $A = B + C$, then $C = A^- B$.
2. $(A^- B) + B \supseteq A$.
3. If $B \subseteq A$, then $0 \in A^- B$.
4. $(A^- B) = -(B^- A)$.
5. $A^- C \subseteq (A^- B) + (B^- C)$.

7. Demyanov difference and separating sets. From property (D2) of the above proposition a theorem follows immediately.

Theorem 6. Let X be a locally convex vector space, I be a finite index set and $S, A_i \in K(X), i \in I$. Then the Demyanov difference

$$S = \left(\sum_{i \in I} A_i \right) = \bigvee_{i \in I} \left(\sum_{k \in I \setminus \{i\}} A_k \right)$$

separates the sets $A_i, i \in I$.

Corollary. Let $A_1, A_2, ..., A_k \in K(\mathbb{R}^n)$ be given. Then for the Demyanov difference holds

$$\left(\sum_{i=1}^k A_i \right) = \bigvee_{i=1}^k \left(\sum_{j=1}^k A_j \right) = \partial_\mathcal{C} P|_0,$$

where $\partial_\mathcal{C} P|_0$ is the Clarke subdifferential of $P = \min \{p_{A_1}, p_{A_2}, ..., p_{A_k}\}$ at $0 \in \mathbb{R}^n$, i.e. the minimum of the support functions of the sets A_i.

Вестник СПбГУ. Прикладная математика. Информатика... 2018. Т. 14. Вып. 1 29
Proof. This follows immediately from the definition of the Demyanov difference for the finite dimensional case (see [12]) and the formula

\[
\left(\sum_{i=1}^{k} p_{A_i} \right) - \max \left\{ \sum_{j \neq i}^{k} p_{A_j} \mid i \in \{1, \ldots, k\} \right\} = \min \{ p_{A_1}, p_{A_1}, \ldots, p_{A_k} \},
\]

which completes the proof.

References

Статья рекомендована к печати проф. Л. А. Петросяном.
Статья поступила в редакцию 15 октября 2017 г.
Статья принята к печати 11 января 2018 г.